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Abstract
The choice of convolutional routines (or primitives) for imple-
menting the operations in a Convolutional Neural Network
(CNN) has a tremendous impact over the inference time. To
optimise the execution latency for a target system, a lengthy
profiling stage is needed – iterating over all the implementa-
tions of convolutional primitives in the configuration of each
layer to measure their execution time on that platform. Each
primitive exercises the system resources in different ways,
so new profiling is currently needed when optimising for
another system. In this work, we replace this prohibitively
expensive profiling stage with a machine learning based ap-
proach of performance modelling. Our approach drastically
speeds up the optimisation by estimating the latency of con-
volutional primitives in any layer configuration running on
a target system. We reduce the time needed for optimising
the execution of large neural networks on an ARM Cortex-
A73 system from hours to just seconds. Our performance
model is easily transferable across target platforms. This is
demonstrated by training a performance model on an Intel
platform and transferring its predictive performance to AMD
and ARM systems, using very few profiled samples from the
target platforms for fine-tuning the performance model.

CCSConcepts: •General and reference→Performance.
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1 Introduction
Deep learning has triggered a machine learning renascence.
It is now powering numerous applications relying on tasks
such as image classification, image segmentation, voice recog-
nition, machine translation, activity recognition, and many
others. Most of these applications use the cloud for their data
processing, though we are seeing a drift from this paradigm
over the last few years towards edge intelligence [19]. This is
encouraged by the increasing number of computing capable
devices around us (mobile phones, wearables, IoT devices)
and growing privacy awareness.
Designing computationally efficient networks for edge

intelligence is an active area of research [7, 10]. Producing
specialised models by machine learning engineers to tar-
get a particular device is a futile approach due to the large
number of various devices. Another approach is to take es-
tablished CNN models and make their execution more edge-
computing friendly. Quantization [6] andmodel pruning [16]
are common techniques for reducing the execution complex-
ity. However, these methods alter the structure of the original
network, often lowering the estimation accuracy [6].

An alternative approach for improving the execution of a
CNN is to select optimal primitives to use for each layer [1].
Convolutional primitives are alternative implementations of
the convolution operation, producing equivalent data trans-
formations in different ways. Their performance (execution
time) varies due to their unique system resource utilisation
(computations, memory access, etc.). Unlike model compres-
sion methods, with primitive selection the original estima-
tion accuracy is maintained.

The set of available convolutional primitives includes the
im2col variant – performing a data transformation and the
layer operation through a matrix multiplication; the direct
convolution variant as a deep nested loop without any addi-
tional memory allocation; the winograd variant, and others.
Their implementation is also characterized by the data input
format, the output format, and the employed system support
(vectorization, etc.). These primitives have various perfor-
mances based on the shape of the convolutional layer they
implement, and no single primitive dominates the selection.
The main drawback of the primitive selection approach

is that it requires a profiling stage to measure the execution
time of each primitive in the network configuration [1]. How-
ever, this is excessively time consuming due to the many
layer configurations in the CNNs, which makes applying

https://doi.org/10.1145/3437984.3458840
https://doi.org/10.1145/3437984.3458840
https://doi.org/10.1145/3437984.3458840


EuroMLSys’21, April 26, 2021, Online, United Kingdom Rik Mulder, Valentin Radu, and Christophe Dubach

BA CConv1 𝜆𝑁1

𝜆𝐸1
data transformation

BA CConv2 𝜆𝑁2

𝜆𝐸2
data transformation

BA CConv3 𝜆𝑁3

Figure 1. Primitive selection in a three-layer convolutional
neural network, choosing from three available primitive im-
plementations (A, B and C). Each node and edge have associ-
ated costs: 𝜆𝑁 ∈ R3 (the execution time of the primitive) and
𝜆𝐸 ∈ R3×3 (the data layout transformation time) respectively.
The primitive selection assigns a primitive to each layer such
that it minimizes the total execution cost.

primitive selection difficult. It is unimaginable for applica-
tion developers to optimise their networks for all the possible
devices in the market. Any new network would also need
profiling of its layer configurations on many target devices.
We find that profiling about one hundred primitives with the
layer configurations of ResNet-34 takes more than an hours
on an ARM powered Odroid board.

Here, we eliminate the excessive profiling process and re-
place it with a performance model to estimate the execution
time of primitives for any given layer shape. We show that
our neural network based performance model is easily trans-
ferable to estimate the execution cost on other devices. For
this, we adopt transfer learning of a trained model with just
a small amount of profiled samples from the target device.

Specifically, we make the following contributions:

1. We design a performance model that accurately pre-
dicts the execution time of convolutional primitives
for any configuration of convolutional layer.

2. Our experiments show that the performance model
offers a substantial speedup in constructing the run-
time configuration for a range of neural networks.

3. The performance model is easily transferable across
platforms, whichwe demonstrate by training themodel
on a x86 system and transferring its predictive capacity
to estimate for AMD and ARM systems.

2 Background and Motivating Example
This section presents the concept of primitive selection and
introduces a motivating example to justify the need for per-
formance models.

Table 1. Motivating Example. These are the times needed
for optimising each CNN using: (i) the estimated execution
time of primitives with our performance model (second col-
umn); and (ii) the profiled execution times on the device
(third column). We do not consider here the training time
for our performance model as that is an offline process.

CNN Model Perf. Model Inf. Profiling

Intel AMD Arm

AlexNet 43.6 ms 66 s 189 s 424 s
VGG-11 327 ms 0.20 h 0.67 h 1.72 h
VGG-19 673 ms 0.57 h 1.79 h 4.58 h
GoogLeNet 177 ms 182 s 445 s 0.37 h
ResNet-18 119 ms 242 s 736 s 0.43 h
ResNet-34 194 ms 494 s 0.41 h 0.89 h

2.1 Primitive Selection
By primitive selection in a neural network we denote the
selection of the optimal primitive (computational routine)
to use for implementing the convolution operation at each
convolutional layer.

The execution time of each primitive is influenced by the
layer configuration and the computing platform it runs on.
Figure 1 shows this cost as 𝜆𝑁𝑖 of layer 𝑖 , with each of the
three primitives having their own cost (𝜆𝑁𝑖

𝐴
, 𝜆𝑁𝑖

𝐵
and 𝜆

𝑁𝑖

𝐵
).

Data formats between two consecutive layers may not imme-
diately match (e.g., frequency domain primitives structure
their output data in a different format). So an additional com-
putation cost is associated to preparing the data into the
expected format for the primitive on the following layer in
the network. This is represented as 𝜆𝐸 and added to the cost
of using these two primitives.

The primitive assignment is made at layer level such that
the entire execution time of the network is minimised. Many
solvers can perform this selection. We use the Partitioned
Boolean Quadratic Programming (PBQP) solver as it has
been used successfully on this problem before [1].

2.2 Motivating Example
The primitive selection task has two stages. First, a cost is
associated to each primitive and data format transformation.
Second, these costs are used by a solver to determine the
optimal primitive at each layer. With given execution costs,
Boolean Quadratic Programming (PBQP) performs this se-
lection in under a second even for large neural networks [1].
While the second stage is relatively fast and can be done

offline, the first stage of associating a cost to each primitive
is excessively time consuming. Currently, this is done by
profiling each primitive in each layer configuration on the
target device. For smaller devices this can take a long time.
Table 1 shows the profiling time of six deep neural net-

works on three computing platforms (third column). We can
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see that profiling all the candidate primitives for each layer
configuration can span into the order of hours. By compar-
ison, our performance model estimates the execution time
of each primitive in only hundreds of ms (second column).
These times also include the time of the PBQP optimiser.

It is clear that replacing the profiling stage with the es-
timation of a performance model saves substantial time in
specialising the CNN to a target device. We show in our
evaluation that these estimations are not just fast, but also
highly accurate.

3 Related Work
Many approaches have been proposed for reducing the com-
putational load of neural networks. These include lowering
the floating point precision for inference [3], producing more
compact models with neural architecture search [5, 8, 12, 17]
and specializing the computations by employing compiler
techniques [14, 18].

Previous works on primitive selection optimize the execu-
tion time of convolutional neural networks using empirical
measurements of execution time [1] and heuristically select-
ing the search space with reinforcement learning [4].

Neural networks optimised with primitive selection have
been shown to produce large speed-ups over the common
frameworks, which use a single primitive across all the con-
volutional layers [1]. Such an optimisation has also been
explored with reinforcement learning [4], which greatly re-
duces the search space due to heuristics about the cost of
similar primitives and scaling costs with layer size. How-
ever, primitives may behave similar on one platform, but
can have completely uncorrelated behaviour on another de-
vice or across layer sizes. There is no guarantee that the
same heuristics hold across platform, so the additional cost
of tuning the human-driven heuristics is still prohibitive.

Both works [1, 4] rely on a lengthy profiling stage, which
can make the method impractical to scale. This work aims
to remove the need for a profiling stage by introducing a
performance model to predict the execution time of each
primitive instead of measuring it on a given hardware.

Machine Learning for Performance Modelling. Previ-
ous work have shown that machine learning methods can
predict the execution time of algorithms via performance
models [9, 13]. Effort has also been invested in predicting
the execution time of convolutional networks [2, 11]. Linear
regressions [2] and fully connected neural networks [11]
produce accurate predictions of execution time of a convolu-
tional network. These are trained and evaluated for a single
fix primitive and never considered for estimating the latency
of a whole set of primitives.
Transfer learning have also been shown to significantly

reduce the number of data points required for training a
performance model on benchmark workloads [13]. Our task
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Figure 2.Our performance model is a neural network which
takes as input the shape of the convolutional layer that needs
to be optimised and outputs the estimated execution time of
each primitive and data transformation.

is harder than adapting to benchmark workloads because of
the subtle performance differences across various primitives.

4 CNN Performance Optimisation
We replaces the profiling stage of primitive selection from [1]
with a performance model to estimate the execution time of
primitives and data transformations.

Our performance model has a fully-connected neural net-
work structure. Latency estimations produced by our per-
formance model are passed to the PBQP solver to determine
the final network configuration.

4.1 Convolutional Layer Optimisation
Figure 2 shows the estimation process with our performance
model. This takes as input the shape of a convolutional layer:
input image size 𝑖𝑚 (height and width), its number of chan-
nels 𝑐; the kernel size 𝑓 , stride 𝑠 and number of kernels 𝑘 .
The performance model predicts the execution time of all
the primitives in that layer configuration.

A significant number of highly efficient implementations
are available for producing the convolutional operation (i.e.,
convolutional primitives), each with their drawbacks and
benefits. We refer the reader to our previous report [15] for
a broader description of the primitives we use in this work.

4.2 Performance Modelling
Performance Metrics. We assess the quality of our per-

formance model estimations using the median relative abso-
lute error (MdRAE):

|𝑦 − 𝑦 |
𝑦

where 𝑦 represents the prediction and 𝑦 the measured exe-
cution time on the target system.

Performance Model Architectures. Given the complex
performance of some primitives, amulti-layer fully-connected
neural network is our best choice for a performance model.
We train a performance model for each target computing
platform. This takes as input the shape of convolutional layer
and estimates the execution time of all the primitives in one
output vector. We exploit batched inference to provide the
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Figure 3. The primitive selection process with performance modelling. We optimise the execution of a Convolutional Neural
Network with 𝑝 layers. Our performance model takes as input the shape of a convolutional layer and estimates the execution
time of the 𝑛 primitives and data layout transformations that can implement that layer. Each convolutional layer is characterised
by its input number of channels 𝑐𝑖 , input size 𝑖𝑚𝑖 , number of kernels 𝑘𝑖 , kernel size 𝑓𝑖 and stride 𝑠𝑖 . These execution time
estimations are used by the PBQP optimiser to make the optimal primitive assignment (𝑃𝑖 ) across the whole network. The
performancemodel is batched – performing the computation for all layer configurations simultaneously in a single forward-pass
of the performance model.

shape of all the convolutional layers of a CNN that needs to
be optimised and produce a batch of estimations, one output
for each layer of the CNN, in a single forward-pass through
our performance model.

Loss Function. Latency prediction is a regression task.
As such, we use the mean squared error (MSE) loss func-
tion. Some execution times may be undefined, for instance
when a primitive cannot be applied to a particular shape
of a convolutional layer. We make sure that undefined val-
ues have no effect on the training quality by masking out
those values and their gradients in the forward pass and in
the back-propagation stage respectively. By masking them,
their squared error is zero, resulting in no influence over the
training process.

Data Sample Normalization. Execution times can be
substantially wide in magnitude. The MSE loss function is
affected by extreme values. To address this issue, we trans-
form the latency times to a log scale, so that it operates
well in both large and small values. To improve the training,
we normalise the input values to zero mean and a standard
deviation of one.

Hyperparameter Search. Based on empirical exploration,
we find the best hyperparameters for training our perfor-
mance model to be the ones indicated in Table 2. These are
used for generating the results presented in our evaluation
section.

4.3 CNN Primitive Assignment
We adopt the primitive selection method described in Section
2.1, with the main difference being that instead of using
measured times of the primitives, we use the performance
estimation produced by our performance model. Figure 3
presents the steps in the optimisation process:

Table 2. The best hyperparameters we found for training the
performance model. Early stopping terminates the training
at about 250 epochs when no further improvement is ob-
served for the estimation accuracy. In the fine-tuning stage
of transfer learning, the learning rate is multiplied by 10−1.

Hyperparameter Value

Optimizer Adam
Learning Rate 0.001
Weight Decay 1 × 10−5
Batch Size 1024
Iterations Early Stopping
Non-Linearity ReLU
Architecture 5 × 128 × 512 × 512 × 128 × 𝑛

1. For a given convolutional layer, we extract its configu-
ration parameters.

2. The layer configuration parameters are passed as input
to the performance model to estimate the execution
time of all primitives and data-layout transformations.

3. The execution time predictions are passed to the PBQP
solver to produce the primitive assignment across the
entire network.

4.4 Profiling Data
We train our performance model from scratch with samples
profiled from the target device using the most relevant con-
figurations of convolutional layers. In this profiling stage we
collect the tuples:

(𝑘, 𝑐, 𝑖𝑚, 𝑠, 𝑓 ) → (𝑅1, 𝑅2, . . . , 𝑅𝑁 )
where the left side is the layer configuration (𝑘 , 𝑐 , 𝑖𝑚, 𝑓 , 𝑠) and
the right side is the measured times of running 𝑁 primitives
that implement the layer configuration. Not all primitives
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Figure 4.MdRAE (median relative absolute error) of estimated execution times using our NN performance model and a Linear
Regression baseline on the Intel test samples. We aggregate the results on primitive class to observe the problematic primitives.

Table 3. The range of values taken by convolutional layer
configuration parameters in the most popular CNNs.

Parameter Meaning Common Range

𝒌 #kernels 1 to 2048
𝒄 #channels 1 to 2048
𝒊𝒎 image size 7 to 299
𝒔 stride 1, 2 or 4
𝒇 kernel size 1 to 11 (odd)

work for every configuration (e.g. a primitive may require
a specific kernel size), hence some 𝑅𝑖 can be undefined, as
mentioned earlier.
We identify the values of convolutional layer configura-

tion parameters in the most common CNNs, as presented
in Table 3. For instance, we consider the input image size
between 7 and 299 pixels, to match the shrinking image size
that is propagated forward in the network.

The set of convolutional primitives is a broad list of known
primitives, which were also used in previous work [1]. We
take a similar approach for profiling data transformations.

5 Evaluation
This section validates our performance modelling approach
by presenting the high accuracy of the performance model
in estimating primitive latency and the effect of these estima-
tions over the final solution produced by the PBQP solver.We
also show that our performance model is easily transferable
across computing platforms requiring minimal profiling.

5.1 Data Collection
We collect primitive execution times from three machines:
Intel Core i9-9900K @ 5.0GHz; AMD A10-7850K @ 3.7GHz;
and ARM Cortex-A73 (rev2) @ 2.36GHz. The profiled primi-
tives are those used in previous work [1] (commit 8b0e642)1.
For the ARM system, primitives are cross-compiled.

1https://bitbucket.org/STG-TCD/trinnity-benchmarks/
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Figure 5. The relative increase in latency when the network
is optimized with estimations from our performance model
over the latency of optimising with the measured execution
times. We see the increase is negligible for 6 deep CNNs.

Each primitive is profiled 25 times for each layer configura-
tion and we take the median value for reliability. We find that
no single primitive is routinely the quickest, neither is one
family of primitives dominant across all layer configurations.

5.2 Performance Modelling
We evaluate a linear regression model (Lin) as baseline and
our neural network (NN) performance model constructed as
presented in Table 2.
We train the models with 80% of the profiled data from

the Intel system. 10% of the data is used for fine-tuning
the hyperparameters (validation set) and the remaining 10%
for test. Figure 4 presents the performance model accuracy
on the test set. We can see that the estimated latency of
most primitives is below 2% absolute error. Our performance
model outperforms the linear regression baseline by a big
margin.

Similar prediction accuracy is observed for modelling the
latency of primitives and data transformations on the other
two platforms (ARM and AMD), which we present in a sepa-
rate report [15].

https://bitbucket.org/STG-TCD/trinnity-benchmarks/
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(a) Prediction accuracy of performance model estimations using
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Figure 6. The predictive and primitive selection performance of the ARM and AMD performance models, fine-tuned using a
varying amounts of training data (shown on the x-axis). The pre-trained Intel performance model is transferred and fine-tuned
with data from the other two platforms (AMD and ARM). The dotted lines shows the performance of the ARM and AMD
performance models when trained from scratch using all the profiled data from these platforms.

5.3 Impact on Primitive Selection
Estimating the latency of primitives with an error of be-
tween 2% and 10% may change the ranking of best candidate
primitives. Our next experiment exposes the impact of using
estimated execution times in the PBQP solver.

Figure 5 shows the increase in execution time of the entire
neural networks that is optimised first with the measured
execution times, and then with the estimated latency by our
model. Using the estimated latency causes a slight increase
in the large CNN execution time due to the marginal-opium
ranking of primitives.We find that formost cases the increase
is negligible, under 1%, compared to direct latency profiling.

5.4 Transferability
It is expensive to train performance models from scratch for
a new platform due to the lengthy profiling of a good size
training set. Instead, we propose to use a trained performance
model and specialize it for other platforms with minimal
amount of profiled data points.
We evaluate the transferability of a trained performance

model from an Intel machine to other systems (ARM and
AMD) by fine-tuning the model with a few profiled samples
from the target machines. This is tested on the layers of
GoogLeNet due to its large variety in convolutional layers.
Previous work has shown that transfer learning aids the

burden of collecting a large training set from the target de-
vices [13]. Our initial performance model is trained on 90k
samples profiled on the Intel system. We want to know how
much data from another system is actually enough for fine-
tuning this pretrained performance model to reach good
accuracy. To answer this, we perform 6 separate fine-tuning
tests using different fractions of the initial training sets. Sam-
ples are randomly selected at 0.1%, 1%, 2.5%, 5%, 10% and
25% fractions of the available training data from the AMD

and ARM platforms (90k, 40k samples respectively). The fine-
tuning is repeated 25 times using a random subsets of the
available data.
Figure 6 shows the accuracy of these fine-tuned perfor-

mance models, both for latency estimation accuracy and
for their effects in the PBQP solver. We see that just 10% of
the available training data is sufficient for an accuracy no
lower than 2% compared to that obtained when training from
scratch using 100% of the available data. A further decreasing
below 5% of the training data starts introducing substantial
error, but this is still good enough if training data is very
hard to obtain, as a trade-off for accuracy.
We present further results in a separate report [15] and

make our code and data available2.

6 Conclusions
We introduce performance modelling in convolutional primi-
tive selection for accelerating the execution of CNNs. Assess-
ing the latency of each primitive that can implement a con-
volutional layer is essential in primitive selection. Instead of
profiling all the layer configurations, our performance model
estimates the execution time all the primitives in the given
layer configuration. Execution latency estimation reduces
the task of primitive selection from hours to just seconds.
Our performance model estimates the execution time for any
convolutional layer configuration, which makes it ideal for a
dynamic environment with many custom neural networks,
such as mobile phones running various intelligent applica-
tions. The execution time of entire CNNs is off by only 0.39%
on average (worse case 1.1%) from the optimal execution time.
Our performance model is also viable for transfer learning.

2https://github.com/Ubiquitous-AI-Lab/CNN-performance-modelling
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This requires only a small amount of profiled execution time
samples from a target platform.

Future Work. We will explore strategies for reducing the
amount of profiled samples needed in transfer learning from
a new target device by determining which candidate primi-
tives and layer configurations are the most informative about
the computing system characteristics.
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