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ABSTRACT
Federated learning is a method of training a global model on the
private data of many devices. With a growing spectrum of devices,
some slower than smartphones, such as IoT devices, and others
faster, such as home data boxes, the standard Federated Learning
(FL)method of distributing the samemodel to all clients is starting to
break down – slow clients inevitably become strugglers.We propose
a FL approach that spores different size models, each matching the
computational capacity of the client system. There is still a global
model, but for the edge tasks, the server trains different size student
models with attention transfer, each chosen for a target client. This
allows clients to perform enough local updates and still meet the
round cut-off time. Client models are used as the source of attention
transfer after their local update, to refine the global model on the
server. We evaluate our approach on non-IID data to find that
attention transfer can be paired with training on metadata brought
from the client side to boost the performance of the server model
even on previously unseen classes. Our FL with attention transfer
opens the opportunity for smaller devices to be included in the
Federated Learning training rounds and to integrate even more
extreme data distributions.
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•Computingmethodologies→Model development and anal-
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1 INTRODUCTION
Federated Learning (FL) is seen as the best solution for training
a machine learning model on private data of many devices. The
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wide adoption of smartphones, which generate a vast amount of
data, has encourage the emergence of this privacy preserving learn-
ing method [12]. FL is used for training the Google Keyboard to
perform next word prediction [5] and for other tasks in mobile ap-
plications [1]. The financial and health sectors are also considering
FL as a viable solution for training machine learning models on
privacy sensitive data.

In traditional machine learning, data is brought to a central
computing hub for processing. By contrast, FL copies a global model
to many devices for local training under the coordination of a server.
Thus, client train instances of the same model without budging the
data from its device. Only the parameters of updated models are
transferred to the server for aggregation into a global model.

Clients selected to participate in a training round perform model
updates over a few local epochs. They are expected to finish their
epochs before a deadline. But as our computing ecosystem flour-
ishes with a wider spectrum of computing devices – such as in
the Internet of Things (IoT) space – system heterogeneity rifts a
gap in the theoretical validation of FL, if more diverse devices are
to be used as clients. Recent work have shown that FL converges
on the assumption that clients perform a similar amount of local
updates [15, 18]. In the current FL settings, slower clients need to
perform less local updates or risk slowing down the entire training
process. With more small devices producing vast amounts of data,
which could be clients in FL settings, we need to design other so-
lutions for clients to train for a similar amount of epochs on their
local data and still manage to finish before a reasonable deadline.

The best solution we see fit for this problem is to adapt the
amount of work each client performs based on their system compu-
tational performance. Different hardware size devices cannot train
a standard global model in the same amount of time. Thus, we pro-
pose to replace the standard model distributed to clients with a set
of smaller models that match the computing performance of each
system. For this, we rely on the student-teacher learning setting
with Attention Transfer [23]. By this method, student models are
forced to mimic the attention maps of the teacher model at different
levels in the network.

The important question we need to answer in order for FL with
Attention Transfer to be a viable solution is: Can student (client)
models updated on client local data pass their acquired knowledge
to the teacher (server) model? We experiment with a combination
of Attention Transfer and training on metadata to facilitate the
knowledge exchange from the client models to the global (server)
model.

In this paper we make the following contributions:

• We propose FL with Attention Transfer. Small client models
are selected to match the computing performance of target
clients. These models are trained with attention transfer
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from the global model and generic data on the server. We
compare our approach with related work in Section 2.

• Knowledge accumulated by the client models from the local
data is aggregated in the global model. We rely on a train-
ing method combining attention transfer and training on
metadata to update the global model with the knowledge
gathered by the client models. The details of this training
process are presented in Section 3.

• This training method is evaluated to show that smaller stu-
dent models are capable of boosting the performance of the
teacher model when trained both on IID (Independent and
Identically Distributed) data and non-IID data. These experi-
ments are presented in Section 4.

2 RELATEDWORK
Federated Learning (FL). FL aims to train a global model in

massively distributed networks [12] at scale [1], over heterogeneous
data of many sources [9], and with different training approaches [3,
14]. Different from traditional FL, we abandon the single client
model paradigm and replace this with many smaller client models
designed to match the computing capability of the client.

System Heterogeneity. The difference in hardware characteris-
tics (processor size, frequency, memory, etc.) across clients and the
amount of local data for training produce large variations in the
number of local updates performed by clients [19]. In the common
FL setting, a deadline is imposed by the server on the time allowed
for the clients to finish their local round. Those clients who manage
only a few local updates or none at all in the given time are called
strugglers and often their work is discarded. FedNova [19] aggre-
gates even the updates from straggler by factoring in the number of
local updates performed by each client for weighting their contri-
bution to the global model update. Li et al. [8] eliminate the round
deadline and allow global asynchronous updates whenever a client
finishes. But clients with more computing power skew the global
model towards their non-IID data.

The other problem with system heterogeneity is that it causes
objective inconsistency. The federated optimisation convergence is
built on the assumption that clients perform a similar amount of
updates from their local data [15, 18]. The best approach to assure
convergence in heterogeneous systems is to allow all clients to
finish their round. Nevertheless, waiting for the slow clients can
significantly increase the training time [19]. By choosing a client
model size that matches the system characteristics, we make sure
that clients finish their local round before a reasonable deadline.

Non-IID data. FL is expected to learn from non-IID data across
devices that generate vastly different distribution data. Zhao et
al. [24] show that the accuracy of federated learning reduces signif-
icantly, by up to 55% on highly skewed non-IID data, due to weight
divergence within the rounds. They address the reduced accuracy
by sharing a small subset of data globally to all edge devices. An
accuracy increases of 30% on the CIFAR-10 dataset is achieved by
sharing only 5% globally data. We adopt a similar approach for
the training on the client side. Other methods such as FedProx [9],
VRLSGD [11] and SCAFFOLD [6] have been designed to handle

non-IID local data. But these methods either result in slower con-
vergence or require additional communication and memory.

Training paradigms. Different training paradigms have been
explored for FL to address system and data heterogeneity. Formu-
lating the training as a multi-task learning [14] results in larger
global models that can accumulate the multiple perspectives of
client models trained on non-IID data as virtual tasks. Knowledge
transfer is used by Liang et al. [10] to train split networks. Knowl-
edge transfer is performed at the network separation point, running
the first part of the model on the client and the final part on the
server. Unlike [10], we see benefit in having the entire global model
on the server. This full model can be shared and used by clients
that have no local data to train a portion for their model.

Attention Transfer has been used in speech recognition to en-
able incremental speech models [13, 25] and in computer vision
to significantly improve the performance of student models [23].
This forces the student models to mimic the attention maps of the
teacher model at different levels in the network. Meta-learning [4]
relies on meta-knowledge extracted as generic information across
tasks to generalise for a new task. We build on this concept by
extracting meta-knowledge as activation maps at different levels of
the student models.

No previous work has considered attention transfer for training
smaller client models. We propose a training paradigm that is effi-
cient in distilling the knowledge learned by the client models from
the local data into the larger global model. The following section
presents this training process.

3 FEDERATED LEARNINGWITH
ATTENTION TRANSFER

We extend the framework of Federated Learning to distribute differ-
ent size client models, which learn from local data and distil their
acquired knowledge back to the global model. This section presents
our approach.

3.1 The Training Process
Figure 1 illustrates the steps involved in the training process. As
in most Federated Learning scenarios, the server holds a global
model. A generic dataset is also available on the server to facilitate
the training on the server side. For each client, a student model is
selected such that its size matches the computing capability of the
client system. Attention transfer is used to train these client models
with knowledge from the global model. This is explained further in
Section 3.2.

After training, the student models are transferred to the clients.
There, the models are used for producing inferences and/or for
further training on the local data. Section 3.3 provides more details.

The refined client model is returned to the server. In addition,
we transfer some reduced representations from the client data in
the form of Metadata to be used in refining the global model. More
details about this process are presented in Section 3.4.
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Figure 1: The training steps performed between the server and a client: (1) the global model trains a custom student model
with attention transfer; (2) the model parameters are sent to the client; (3) local data is used to update the client model; (4)
attention maps over the local data are extracted from a determined level in the client model and aggregated in metadata; (5)
the refined model and metadata are then sent to the server to finish the round; (6) on the server, refined client models train
the global model with attention transfer and metadata.
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Figure 2: The global model trains different size student
(client) models using Attention Transfer (AT) with the
generic data from the server. Client models and global
model have the same number of convolutional groups (G1,
G2, G3). Convolutional groups of studentmodels are smaller
and narrower, but the activation maps between groups have
the same size across models to facilitate attention transfer.

3.2 Training the Client Models with Attention
Transfer

Figure 2 presents the Attention Transfer (AT) training process from
the global model (𝑀𝐺 ) to the client models (𝑀𝐶 ) performed on the
server. Each client models is selected considering the computing
capability and load of the client system, such that all clients finish
their local round within a given budget of time. How these client
models are designed to meet the client computing requirements
is outside the scope of this work. The literature reveals solutions
for producing such models via hardware-aware Neural Architec-
ture Search (NAS) [2, 16, 21], reducing the block size from teacher
models [17] and specialising the computing model to match the
computing budget [20]. The only consideration is that the client

(student) models and the global (teacher) model have the same num-
ber of convolutional groups (𝐺𝑖 ) and the same size of activation
maps (|𝐴 [𝑖 ] |) after each group. But generally, client models have
fewer and narrower layers in their convolutional groups.

AT is applied using the generic data (𝐷𝐺 ) of the server. Each
sample is propagated through the global model and the client model,
with the optimiser adjusting the client weights such that it min-
imising the loss at the paired activation maps:

L𝐴𝑇𝐺→𝐶
=
𝛽

2

∑
𝑗 ∈I
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[ 𝑗 ]
𝐶

∥𝑄 [ 𝑗 ]
𝐶

∥2
−

𝑄
[ 𝑗 ]
𝐺

∥𝑄 [ 𝑗 ]
𝐺

∥2


2

(1)

where 𝑄 [ 𝑗 ]
𝐶

= 𝑣𝑒𝑐 (𝐹 (𝐴 [ 𝑗 ]
𝐶

)) is the vectorised form of the activation
map 𝐴 [ 𝑗 ]

𝐶
of a client model, and the respective 𝑗 pair in the global

model 𝑄 [ 𝑗 ]
𝐺

= 𝑣𝑒𝑐 (𝐹 (𝐴 [ 𝑗 ]
𝐺

)); I is the set of levels in the two net-
works from where activation maps are transferred. In Figure 2, we
have I = {𝐺1,𝐺2,𝐺3}.

3.3 Refining the Client Model with Local Data
The trained client model 𝑀𝐶𝑘

is transferred to the 𝑘-th client for
further training on the client local data 𝐷𝐶𝑘

. The local training
refines the client model over a few epochs. The optimiser adjusts
the weights𝑾𝑘 of the client model such that it minimises the loss
function ℓ𝑘 over the local data:

arg min
𝑾𝑘

𝐹 (𝑾𝑘𝒙) =
1
𝑁
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𝑖=1
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(𝑖)
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𝑘
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where 𝑁 is the size of 𝐷𝐶𝑘
, and (𝑥 (𝑖)

𝑘
, 𝑦

(𝑖)
𝑘

) is the 𝑖-th instance of
input-target pairs in the local dataset.

To address the non-IID data challenge, we need to exercise the
upper layers of the network for classes that may not be included in
𝐷𝐺 . We achieve this by collecting activation maps from the upper
layers of𝑀𝐶 . These activation maps collected from a predetermined
level 𝑗 in the network are aggregated and sent to the server as

metadata 𝐷𝑀 =
𝑁⋃
𝑖=1

𝐴
[ 𝑗 ]
𝑖

.
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Figure 3: Client refinedmodels togetherwith somemetadata
brought from the client help to train the global model. This
training involves three steps: (1) attention transfer from the
clientmodels to the globalmodel using the generic data. The
activationmaps of clientmodels are aggregated for transfer;
(2) metadata is used to refine the upper layers of the global
model to compensate for non-IID data of clients; (3) refining
the model on the server generic data.

3.4 Refining the Global Model
Each 𝑘 client sends its refined client model 𝑀𝐶𝑘

to the server in
order to update the global model𝑀𝐺 in the following three steps:

(1) Attention Transfer from𝑀𝐶𝑘
to𝑀𝐺 . This uses the 𝐷𝐺 data

of the server to calibrate the parameters of𝑀𝐺 to the aggre-
gated scales of the𝑀𝐶𝑘

models, minimising the loss:
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where K is the number of clients that finished this training
round and 𝑄 [ 𝑗 ]

𝐶𝑘
= 𝑣𝑒𝑐 (𝐹 (𝐴 [ 𝑗 ]

𝐶𝑘
)) is the vectorised activation

map of the client model𝑀𝐶𝑘
, at group level 𝑗 in the network.

(2) Fine-tuning the upper layers of 𝑀𝐺 using activation maps
from 𝐷𝑀𝑘

. The activation maps from 𝐷𝑀𝑘
are propagated

through 𝑀𝐺 starting from a predefined level in I convo-
lutional groups. The role of this phase is to specialise the
features in the upper part of the network, including for the
under-represented classes due to non-IID data distribution,
but captured in 𝐷𝑀𝑘

as higher level activation maps.
(3) Refining the lower layers with AT by freezing the upper

layers previously trained on 𝐷𝑀 . For this we reduce the size
of I from that used in step 1 to include only the first few
groups of the models I ′ ⊂ I.

The training round finishes with an updated global model𝑀𝐺 .
The next round will rely on this𝑀𝐺 to update the client models.

4 EVALUATION
This section presents our preliminary results that validate our pro-
posed approach of Federated Learning with Attention Transfer.
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Figure 4: The effect of extracting metadata at different lev-
els of the network is compared in term of their test accuracy
yield of the global model. 𝐷𝐺1

𝑀
, 𝐷𝐺2

𝑀
and 𝐷𝐺3

𝑀
are the activa-

tion maps produced by group 1, 2 and 3 resp. in the client
model. The left chart presents the IID data distribution split
and the right chart presents the non-IID data distribution.

Table 1: The baseline performance of the global model 𝑀𝐺 ,
trained only on the generic data in IID (𝐷𝑣

𝐺
) and non-IID (𝐷𝐺 )

data distributions from the CIFAR-10 dataset.

Model Model Config Training data Test Acc.

𝑀𝐺 WRN-40-1 𝐷𝑣
𝐺

𝐷𝐺

85.30%
84.53%

4.1 Experiment Setup
We aim to show that a client model trained on the local data of a
client can transfer the accumulated knowledge to the global model.
The global model𝑀𝐺 and client model𝑀𝐶 are based on the Wide
Residual Networks architecture (WRN) [22]. The 𝑀𝐺 model has
a depth of 40 and width of 1 (WRN-40-1). For the 𝑀𝐶 model we
experiment with two reduced depth WRN networks (WRN-16-1
and WRN-10-1). We find that both produce very similar results, so
we only report the results of as WRN-16-1 as𝑀𝐶 model. We extract
activation maps from 3 equivalent positions in𝑀𝐺 and in𝑀𝐶 for
attention transfer (Figure 2).

Experiments are conducted on the CIFAR-10 dataset [7]. CIFAR-
10 has a total number of 60,000 images of size 32x32 pixels, with 10
classes and 6,000 images for each class. In our experiments, each
class is referred to based on its label (a number between 0 to 9).

4.2 Training in IID Data
We split the training set of CIFAR-10 into generic data 𝐷𝑣

𝐺
, with a

volume of 20% of the training set and client local data 𝐷𝐶 holding
the other 80% of the training data. Both 𝐷𝑣

𝐺
and 𝐷𝐶 have a similar

distribution of classes.



Towards Federated Learning with Attention Transfer to Mitigate System and Data Heterogeneity of Clients EdgeSys’21, April 26, 2021, Online, United Kingdom

Figure 4 gives us a better understanding of the level in the net-
work fromwhere metadata needs to be extraction for𝑀𝐶 and where
to apply the attention transfer of step (3) as presented in Section 3.4.
The chart to the left in Figure 4 presents the two last phases of
training the global model𝑀𝐺 on the IID data distribution. Training
on just the generic data 𝐷𝑣

𝐺
, the𝑀𝐺 model achieves an accuracy of

85.30% on the test set. We can see that using just metadata learning
is not enough to boost the performance of𝑀𝐺 . But applying atten-
tion transfer of step (3) takes the accuracy of𝑀𝐺 to 86.59% for the
case of attention maps extracted at the level of group 3. The addi-
tional data on the client side improves the performance of the client
model𝑀𝐶 to 88.18%. Although not the entire knowledge gathered
on the local data is passed to the global model, our training method
achieves an improvement of𝑀𝐺 over the baseline of 1.3%.

4.3 Training in Non-IID Data
In the second evaluation scenario, we allocate the training instances
for classes 0 to 8 (45,000 images) to the generic data𝐷𝐺 , and the local
data𝐷𝐶 holds training images for class 9 on top of samples from the
other classes (0..8). This is intended to expose the performance of
our FL training method in data heterogeneity, where some classes
are unbalanced in representation across server and clients (non-IID
data). Training only on 𝐷𝐺 , the test accuracy of the𝑀𝐺 model is
84.53%, because it is never exposed to images of class 9.

Similar to the previous data split, we want to understand what
is the best position in the networks to extract the activation maps
from as metadata. The right chart of Figure 2 presents this scenario.
Again, we see that using just step (2) with Metadata is not enough to
boost the performance of𝑀𝐺 . The client model𝑀𝐶 trained on the
local data of the client increases its performance from 83% to 91.61%
after the local update on the client data. This increased performance
is then transferred to 𝑀𝐺 in the attention transfer and metadata
learning process. As effect of this training, the𝑀𝐺 model increases
its performance to 90.76% on the test dataset, an increase of 6.23%
over its training on 𝐷𝐺 only.

4.4 Training with Fractions of the Metadata
Activation Maps

We continue with the non-IID data distribution as this is the more
realistic scenario of what can be expected in practice. The next
experiment aims to determine how much of the metadata needs to
be transferred from the client to the server for achieving an efficient
update of𝑀𝐺 on the server side.

Fractions of 𝐷𝑀 are transferred to the server. 𝐷𝑀 is constructed
by activation maps obtained at a fix level in the client model 𝑀𝐶

when passing instances from the local data 𝐷𝐶 . We consider the
best positing in𝑀𝐶 found in the previous section, after group 1.

Figure 5 presents the performance of𝑀𝐺 trained by𝑀𝐶 in the 3
steps of attention transfer and metadata on the server. We see that
the best performance is achieved with the entire set of activation
maps 𝐷𝑀 brought from the client side, more than 90% on the test
set. However, very good accuracy is still achieved by 𝑀𝐺 when
training with as little as 10% of the entire 𝐷𝑀 . The evaluation point
at 1% of 𝐷𝑀 sets a noticeable drop in accuracy. Similar as before,
this chart also shows that AT alone and Metadata based learning
are not enough on their own. But in combination these boost the
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Figure 5: We compare the approaches of using
AT(G1+G2+G3)+meta+AT(G1) and meta+AT(G1) in step
(6) of updating the global model𝑀𝐺 .

Table 2: Knowledge transfer from the clientmodel𝑀𝐶 to the
server model𝑀𝐺 . This presents the performance of training
on metadata after the preliminary attention transfer step.
The effect of fine-tuning the upper layers of𝑀𝐺 is presented
from each epoch over the test set and over the instances of
class 9. This shows the growing capacity to recognise previ-
ously unseen instances of class 9 (in non-IID data distribu-
tion).

Model Training
data

Training
Process in P6 Test Acc. Test Acc.

on class 9

𝑀𝐺 𝐷𝐺3
𝑀

Meta 1 Epo.
Meta 2 Epo.
Meta 3 Epo.
Meta 4 Epo.

84.47%
84.14%
77.01%
36.43%

0%
0.1%
19.8%
86.7%

performance of𝑀𝐺 , showing that we can transfer knowledge from
the smaller client model𝑀𝐶 to the global model𝑀𝐺 .

4.5 Ablation Study on the Impact of Metadata
based Learning

From the previous experiments we see that metadata has a more
detrimental effect on the accuracy level of𝑀𝐺 when applied alone.
This evaluation aims to expose the utility of using Metadata based
learning in our training.

Transferred from the client side, 𝐷𝑀 is the only representation
available to the server that holds information about class 9, as
chosen in our earlier data split. This information is in the form of
activation maps taken from the output of group 1, based on the
observations discussed above. Intuitively, the role of this training
phase is to instruct𝑀𝐺 of how to recognise the missing class not
available in the server data 𝐷𝐺 .
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Table 2 presents the performance of 𝑀𝐺 trained first with at-
tention transfer from 𝑀𝐶 (step 1 of refining 𝑀𝐺 as presented in
Section 3.4), followed by metadata learning (step 2 of the training
process). With each epoch, the accuracy of 𝑀𝐺 over the test set
(including all classes) decreases. However, its performance over the
portion of the test set corresponding to class 9 (previously unseen
in the training of𝑀𝐺 ) increases fast. That is because the network
specialises on the features characteristic to class 9 and forgets repre-
sentations that are general for the rest of the classes. In this process,
the upper layers of𝑀𝐺 produce their first representation of class
9. This knowledge remains with𝑀𝐺 in step 3, when AT is applied
again but using the generic data 𝐷𝐺 , which has no samples of class
9. This final step boosts back the recognition capability for the other
classes with the lower layer features.

Our observation is that both AT and metadata learning are re-
quired to distill information from a small model to a larger model.
The former scales the weights of the larger model in the first step
and fine-tunes them in the third step, whereas the latter in step
2 adjusts the features of the upper layers of the network where
representations from the missing are never formed otherwise. In
the final stage (step 3), the accuracy of𝑀𝐺 is boosted back up on
the rest of the classes with AT, and benefiting from not forgetting
the upper features corresponding to the missing class.

5 CONCLUSIONS AND FUTUREWORK
We extend the Federated Learning setting by introducing different
size client models that match the computing performance of each
client. These are trained on the server with attention transfer from
the global model. Our solution addresses the system challenge of
FL by allowing more heterogeneous devices to be included in the
training process without becoming straggler. We also show that our
approach based on attention transfer and meta-learning mitigates
the statistical challenge by transferring the client model gained
knowledge to the global model in non-IID data.

In future work we will extend the evaluation to include more
client models and add other compression techniques for the client
models.

REFERENCES
[1] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex

Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
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