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MM-Fit: Multimodal Deep Learning for Automatic Exercise Logging
across Sensing Devices
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Fitness tracking devices have risen in popularity in recent years, but limitations in terms of their accuracy and failure to
track many common exercises presents a need for improved fitness tracking solutions. This work proposes a multimodal
deep learning approach to leverage multiple data sources for robust and accurate activity segmentation, exercise recognition
and repetition counting. For this, we introduce the MM-Fit dataset; a substantial collection of inertial sensor data from
smartphones, smartwatches and earbuds worn by participants while performing full-body workouts, and time-synchronised
multi-viewpoint RGB-D video, with 2D and 3D pose estimates. We establish a strong baseline for activity segmentation and
exercise recognition on the MM-Fit dataset, and demonstrate the effectiveness of our CNN-based architecture at extracting
modality-specific spatial temporal features from inertial sensor and skeleton sequence data. We compare the performance of
unimodal and multimodal models for activity recognition across a number of sensing devices and modalities. Furthermore, we
demonstrate the effectiveness of multimodal deep learning at learning cross-modal representations for activity recognition,
which achieves 96% accuracy across all sensing modalities on unseen subjects in the MM-Fit dataset; 94% using data from
the smartwatch only; 85% from the smartphone only; and 82% on data from the earbud device. We strengthen single-device
performance by using the zeroing-out training strategy, which phases out the other sensing modalities. Finally, we implement
and evaluate a strong repetition counting baseline on our MM-Fit dataset. Collectively, these tasks contribute to recognising,
segmenting and timing exercise and non-exercise activities for automatic exercise logging.
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1 INTRODUCTION
The popularity of fitness tracking devices has risen in recent years [34], enabling users to monitor their health
and fitness levels through their smart devices. Current fitness trackers, however, are predominantly focused on
tracking continuous high-movement aerobic activities, such as walking, running, and swimming. A small subset
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of fitness trackers also support tracking body-weight and resistance exercises, but they are often restricted to
only tracking exercises in which the fitness tracker is heavily involved in the exercise movements, thus often
failing to track many common exercises. Furthermore, the reliability of current fitness tracking technology is
raising more questions [5], with significant discrepancies being observed across different fitness tracking brands
and models. Their main purpose is to keep the users engaged and in control of their fitness progress. Automatic
exercise logging will bring benefits in tracking user exercises in any settings – working out from at home [17], or
as part of physical rehabilitation programs.
In this work, we propose a multimodal deep learning solution for robust and accurate automatic exercise

logging, which will contribute to advance the current fitness tracking technology. Our system consists of two
main stages; an activity segmentation and exercise recognition stage, followed by a repetition counting stage.
This work also makes contributions towards research into the use of multimodal deep learning for human activity
recognition (HAR) across multiple devices, and for the relatively unexplored task of exercise repetition counting.

There are a number of factors that make HAR and repetition counting challenging. The high variation in how
different people perform the same activity, and even the variation in how an individual performs an activity on
different occasions, sets high demands on HAR and repetition counting systems. There are also modality specific
challenges that arise for HAR and repetition counting tasks. Learning from sensor data, in particular from sensor
data generated across multiple heterogeneous sensors, poses a number of challenges. The model and the brand
of the sensor device, the positioning of the sensor, and the sampling frequency of the sensor, are a number of
factors that can cause significant variations in sensor readings. Another limitation of sensor data for HAR and
repetition counting is that signals are weaker when sensing device is not directly attached to the part of the body
involved in the exercise, which makes some activities harder to distinguish. Finally, sensor drift is a problem that
affects all sensors over time, and can lead to unreliable and deteriorating sensor reading accuracy.
To tackle these challenges, we build our solution on multimodal deep learning methods. Combining inertial

sensor data from user-worn smart devices, assisted by available 3D skeleton sequence data extracted from RGB
video, we hypothesise that these modalities will complement each other, and result in more robust and accurate
HAR and repetition counting models than in isolation. The inertial sensors used in this work are accelerometer
and gyroscope sensors (recording the acceleration and angular velocity, respectively) from smart wearable devices.
The acceleration and angular velocity of body-worn devices change with the body movements, and are thus
informative for inferring what activity a person is performing. The third modality we study in this work is 3D
pose estimate data. Advances in 2D and 3D pose estimation have made it possible to acquire highly accurate
and robust pose estimates in real-time [7]. 3D pose sequence information is highly discriminative for the task of
activity recognition, and allows for a much more compact representation than raw image or depth data, resulting
in more lightweight models. With the widespread availability of cheap cameras and inertial sensors, and the
growing trend of ubiquitous computing, we are seeing an increase in the number of data modalities that are
available across a wide range of settings. This contributes to the timeliness of this research, as we believe there
are many settings where this is feasible (at the gym and at home). We use deep learning methods [29], due to their
demonstrated ability to learn generalised hierarchical representations, which are important for dealing with the
high intra-class variability found in HAR datasets. In addition, deep learning methods can be trained end-to-end
directly on the raw data, avoiding the need for designing handcrafted features of shallower learning methods.
The contributions of this work are three-fold:
• We introduce the MM-Fit dataset, a large collection of time synchronised multi-view, multi-location on
the participant body (inertial sensing) and ambient video sensor (RGB-D) streams, capturing the motion
of full-body workouts. The MM-Fit dataset1 is the first publicly available multimodal dataset for exercise
recognition and repetition counting across multiple devices.

1https://mmfit.github.io
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• We propose a multimodal deep learning framework that uses autoencoders to leverage unlabelled data. We
fuse inertial sensor data and 3D pose estimate data for more accurate exercise recognition.

• We demonstrate that the performance of a single-device HAR model is boosted when training in the
presence of other sensing perspectives – available only at training time, and eliminated at run-time – by
using the zeroing-out training strategy.

2 RELATED WORKS

2.1 Human Activity Recognition
Human activity recognition approaches can be divided into two main categories, sensor-based methods [6, 9,
28, 51], relying on data from inertial measurement units (IMUs), such as accelerometers and gyroscopes, and
video-based methods [1, 21, 39], operating on visual input data, such as colour and depth. The latter category
also includes skeletal-based methods which take as input 2D or 3D human pose estimates, typically extracted
from colour or depth data. Previous works have predominantly focused on unimodal learning, however, there
are many real-world applications, such as exercise recognition, where it is feasible to leverage information from
multiple modalities. Performance on HAR tasks has improved significantly in recent years, as research focus has
shifted from using handcrafted features to using modern deep learning solutions [21]. For conciseness, we focus
on the more recent and effective deep-learning approaches, and limit the scope to sensor-based and skeletal-based
methods, as these are the modalities investigated in this work.

2.1.1 Inertial Sensor-Based HAR. There are a range of sensing modalities that have been used for HAR, with
accelerometers and gyroscopes being the most common ones [51]. These sensors output multivariate time-series
data, which are often segmented using the sliding-window approach, before being passed on to the feature
extraction and classification stages. Traditional pattern recognition techniques, such as Hidden Markov Models
(HMMs), decision trees, and Support Vector Machines (SVMs), have demonstrated strong results on various
activity recognition tasks in controlled environments, however, their reliance on handcrafted features and
ability to only learn shallow representations, restricts their performance and generalisability [28]. Deep learning
approaches, on the other hand, can learn high-level features directly from the raw sensor data as part of an
end-to-end system. Given sufficient amount of data, traditional machine learning and signal processing techniques
are in large part outperformed by modern deep learning approaches [15]. Convolutional Neural Networks (CNNs)
[30] are particularly well suited for working with sensor data, as they efficiently capture local dependencies in the
data, and can learn scale-invariant features, important for dealing with activities performed at different rates of
frequency [18, 54, 55]. Hammerla et al. carried out a comparison of different deep learning approaches for HAR,
investigating Recurrent Neural Networks (RNNs), deep fully-connected networks, and CNNs on three public
datasets. They found that for tasks where long-term dependencies play an important role, RNNs tend to perform
best, whereas if detecting local patterns is of higher importance, as is the case for exercise recognition, CNNs are
preferable [19]. These deep learning approaches require large training sets. Active learning has been used to
reduce the amount of data that needs to be labelled without sacrificing accuracy [22]. Autoencoders and Restricted
Boltzmann-Machines (RBMs) have also been applied to sensor data for HAR with unlabelled data [2, 40]. Radu et
al. demonstrate their superior HAR performance compared to traditional shallow-learning approaches, by using
a multimodal-RBM network to learn a shared representation for accelerometer and gyroscope data [40]. Here we
explore a similar approach but across multiple devices and more complex modalities.

2.1.2 Skeletal-Based HAR. With the release of the Microsoft Kinect depth sensor and body tracking SDK in
2010, and the more recent development of real-time and accurate RGB-based human pose estimation techniques
[7, 35, 42], the research area of skeletal-based HAR has emerged. Skeletal sequence data consists of body joint
trajectories, and can, similarly to inertial sensor data, be viewed as multivariate time-series data. Early works
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focus on constructing handcrafted features to obtain discriminative skeleton representations [14, 50, 52], with
more recent approaches, again, focusing on deep learning.

A range of deep learning approaches have been explored for skeletal-based HAR, in particular, recurrent neural
networks (RNNs) [13], graph neural networks (GNN) [33, 53], and CNNs [12, 25, 32]. RNNs are able to efficiently
leverage time-series information, while GNNs are able to incorporate the spatial constraints and relationships
of human joints in their models. Finally, CNNs have widely been demonstrated to perform well in learning
representations at different abstraction levels, and at learning spatial temporal features. Ke et al. propose a 3D
skeleton representation form using cylindrical coordinates to encode the relative joint positions with respect to
selected reference joints [25]. They demonstrate the efficiency of this representation in combination with deep
CNNs to learn spatial temporal features for HAR. Motivated by their success, we use their proposed skeleton
representation form in this work. Wang et al., explore the integration of video and inertial sensors from a wrist
worn device, using CNNs to extract features independently on each modality, and performing classification using
a RNN[23].

2.1.3 Exercise Recognition. The growing popularity of smartwatches, earbuds and fitness-trackers has stimulated
research interest in HAR for workout settings. Given that the vast majority of existing public datasets for exercise
recognition, only contain inertial sensor data [36, 49], the majority of previous exercise recognition works are
sensor-based. Chang et al. presented one of the earliest works that tackled exercise recognition [20]. They propose
a Naive Bayes Classifier and a HMM approach using two triaxial accelerometers, to achieve 90% accuracy on a
dataset with nine exercise classes. Morris et al. present an automated exercise logging system, consisting of three
main stages; segmenting exercise and non-exercise segments, recognising exercises, and counting repetitions
[36]. In contrast to our approach, Morris et al. use handcrafted features in combination with an SVM to classify
exercises. They evaluate their system on the RecoFit dataset, a large-scale dataset consisting of accelerometer
and gyroscope data collected from an arm-worn sensor. A number of more recent approaches have also explored
deep learning based approaches for exercise recognition, in particular using CNNs [46, 48]. A video motion-based
method, GymCam, proposed in [26], detects and counts exercise repetitions by identifying repetitive motions in
videos with handcrafted optical flow features and a fully-connected classifier. They test their approach in an
unconstrained and challenging environment, obtaining a 93.6% exercise recognition accuracy, and an average
repetition count within 1.7 of the true count per exercise set. Other systems have considered the home WiFi radio
as sensing modality for exercise recognition [17].

2.2 Multimodal Deep Learning
Multimodal deep learning is concerned with how to fuse different modalities, such that the learning task can
best leverage the different data perspectives. Ngiam et al. propose a cross-modal RBM learning approach to
learn better unimodal features by training on multiple modalities [38]. They demonstrate the efficiency of their
approach by training on video and audio data, and testing on just a single modality, for the task of audio-visual
speech classification. Alternative solutions for missing modalities have been explored, such as with adversarial
autoencoders, which show good performance in generating the missing modality to be used in the recognition
stage [44]. Radu et al. explore a number of fusing strategies for multimodal deep learning methods [41], comparing
early feature concatenation and modality-specific architectures, on activity and context recognition tasks using
inertial sensor data. Modality-specific architectures first learn unimodal features before learning a shared cross-
modal representation. We develop a similar, but more complex multimodal neural network architecture in this
work. [41] demonstrate that their proposed modality-specific CNN architecture outperforms the other explored
approaches on three out of four tasks, and achieves an average accuracy that is 5% higher across all four tasks,
compared to the early feature concatenation architecture. To specialise the activity recognition process to each
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user, adversarial networks have been used [3], which rely on Siamese networks to decrease the variants between
the representations of different subjects.

2.3 Repetition Counting
We focus on sensor-based repetition counting as this is the approach taken in this work, however, there are also
a number of works for video-based repetition counting [31, 43]. The majority of sensor-based repetition counting
works focus on counting exercise repetitions [10, 20, 37], and rely on signal-processing techniques. Chang et
al. propose two approaches for repetition counting on triaxial accelerometer data; a peak counting algorithm,
and a method using the Viterbi algorithm with a Hidden Markov Model (HMM). On a dataset of nine workout
exercises they achieve a miscount rate of 5%. Choi et al. adopt a simple signal-processing technique to track
repetitions using accelerometer sensors attached to gym exercise machines [10]. Their predictions are within one
repetition of the ground-truth, 95% of the time. A recent deep learning approach proposed by Soro et al., leverage
repetition-level annotations to regress the number of repetitions in a given input segment window. This is done
using a CNN applied on inertial sensor data collected from a wrist-worn and an ankle-worn sensor [46]. Their
model’s predictions are within one of the true repetition count, 91% of the time, on a dataset with 10 CrossFit
exercises. A limitation with their approach is that it requires having a separate repetition counting model for
each exercise class, and having access to repetition level annotations.

3 MM-FIT DATASET
To enable research on multimodal learning for activity segmentation, exercise recognition and repetition counting,
we have collected and annotated a multimodal dataset of participants performing full-body workouts. The MM-
Fit dataset is made publicly available2, with the hope that it will stimulate further research in these areas and be a
valuable resource to the community. This section outlines the data collection and processing of the MM-Fit dataset.

3.1 Data Collection Overview
Participants performed full-body workout exercises in front of two depth cameras while wearing five differently-
positioned smart devices collecting inertial sensor data. We restrict the task to single-person exercise recognition,
so each workout session involves just one participant. This scenario is specific to home workouts. The workout
sessions consist of three sets of ten exercises, with ten repetitions for each set. The following set of well-known
resistance training exercises were chosen; squats, lunges (with dumbbells), bicep curls (alternating arms), sit-ups,
push-ups, sitting overhead dumbbell triceps extensions, standing dumbbell rows, jumping jacks, sitting dumbbell
shoulder press, and dumbbell lateral shoulder raises. The exercises were demonstrated to the participants before
their workout session to ensure familiarity with each exercise, but no corrections to the participant’s form were
made during the workout. For the exercises involving dumbbells, the participants had access to two dumbbells
with adjustable weight of up to 7.5kg each, and were free to choose how much weight to use. In between sets
participants could decide how to rest and for how long, with the sensors continuing to collect data.
Participants were asked to wear two smartwatches, one on each wrist, an earbud in their left ear, and two

smartphones, one in their left trouser pocket (Huawei P20) and the other in their right trouser pocket (Samsung
S7). The Huawei P20 was only used to collect data in six of the workout sessions, and we have therefore decided
to exclude this device from our data analysis here, but we still include this device in the larger dataset. The
smartwatches and earbud are fixed in orientation when worn, and the smartphones were ensured to be placed
in the pocket with the camera facing downwards and outwards. Inertial sensor data was collected from all five
devices using the inbuilt triaxial accelerometer and gyroscope, and also the magnetometer in the smartphones.
Heart rate data was also collected from the smartwatches using the optical heart rate sensor. Figure 1 displays an
2https://mmfit.github.io
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Table 1. An overview of the devices used in the data collection, and the collected modalities.

Device Modality Frequency (Hz) Resolution

Orbbec Astra Pro RGB 30 1080x720
Depth 30 640x480

Mobvoi TicWatch Pro
Accelerometer 100 -
Gyroscope 100 -
Heart beats per minute 1 -

eSense Accelerometer 90 -
Gyroscope 90 -

Samsung S7
Accelerometer 210 -
Gyroscope 210 -
Magnetometer 100 -

Huawei P20
Accelerometer 500 -
Gyroscope 500 -
Magnetometer 65 -
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(b) Gyroscope.

Fig. 1. Sensor readings from a left-worn smartwatch triaxial accelerometer and gyroscope recorded during a set of squats.

example accelerometer and gyroscope sensor segment. Custom applications stream and store the sensor data
from each device. All the devices used in the data collection, their sensing modalities and sampling frequencies
are presented in Table 1.
Colour images and depth maps of the workouts were recorded at 30 frames per second from two viewpoints

using the Orbbec Astra Pro RGB-D camera. The Astra Pro depth sensor uses structured light to capture depth
information, and has a range of 0.6-8m. We place the camera such that the participant is within a 2-6m range
from the camera. The depth maps capture the planar distance to the camera of the scene. For each workout
session the camera was set up in approximately the same position. The colour and depth data was recorded at
the maximum resolution, 1280 × 720 for colour, and 640 × 480 for depth. Example RGB frame and depth map
outputs are given in Figure 2.

We provide an additional vision-based modality, in the form of 3D pose estimates. We extract 3D pose estimates
from single-view RGB frames using the highly-accurate 2D pose estimation system OpenPose [7], and the 2D
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(a) Camera 1 RGB image. (b) Camera 1 depth map.

Fig. 2. Example colour and depth camera output.

Fig. 3. 2D and 3D pose estimates obtained using OpenPose [7] and Martinez et al. [35], respectively.

to 3D regression model proposed by Martinez et al. [35]. OpenPose is an open source multi-person 2D pose
estimation system that uses a CNN-based bottom-up approach to find body parts in RGB images. To lift the 2D
pose estimates to 3D, Martinez et al. propose a simple but effective deep fully-connected network, which at the
time of publication in 2017, outperformed the state-of-the-art 3D pose estimation on the Human3.6M dataset
by 30% [35]. Examples of 2D and 3D pose estimates on two RGB frames from the MM-Fit dataset are shown in
Figure 3. The resulting pose estimates are highly accurate, robust to fast movements, and can handle simple cases
of occlusion, as demonstrated in Figure 3.

In total, 21 workout sessions were recorded, totalling 809 minutes of data. The workout lengths range from 27
to 67minutes, with an average duration of 39minutes. A total of 616 sets, and 6160 repetitions were collected, and
exercises constitute 26%, or 207 minutes of the data, with the remaining portion corresponding to non-exercise
activities. Ten subjects participated in the data collection; two participants carried out six workout sessions each,
one participated in two sessions, and the remaining participants carried out one workout session each.

3.2 Data Annotation
To use the MM-Fit dataset for multimodal learning, the data from each of the six devices used in the data collection
were time-synchronised. This was done by asking each participant to perform an abrupt synchronisation jump
from a stand-still position at the beginning of each workout. The synchronisation jump was used to determine

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 4, Article 168. Publication date: December 2020.



168:8 • Strömbäck et al.

the offset between each device system clock and a chosen reference clock. With the offset of system clocks to the
reference clock, samples from each device could be time aligned.

Each workout has been manually annotated with the video frame boundaries of where each exercise set begins
and ends, and the number of repetitions in each set. The workouts were annotated by the same annotator by
inspecting the videos of the workout sessions. Participants were instructed to perform 10 repetitions in each
set, however, in limited cases, due to miscounting, fewer or more than 10 repetitions were performed. There is
some ambiguity involved when annotating the start and end frames of exercises, and the number of repetitions.
When determining when a participant starts an exercise, is it when they are in the exercise start position, or is it
only once they start the exercise motion? Is the end of a set of jumping jacks when the feet come together for
the last repetition, or is it when the arms stop swinging? Does sitting up at the end of a set of sit-ups count as a
repetition? These ambiguous cases do not arise very frequently, but to minimise the impact on the data quality,
we ensured to handle these cases in a consistent manner by the same human annotator. Given the discussed
ambiguities, and the difficulties in identifying exactly when a workout begins and ends, we estimate that the
precision of the majority of our start and end annotations are within 2-3 frames (60-100ms) of the ground-truth,
which is more than sufficient for the task of activity recognition and repetition counting.

4 METHODOLOGY

4.1 Activity Segmentation and Exercise Recognition
In this section we outline our proposed multimodal approach for activity segmentation and exercise recognition.
Our approach can be split into three main training stages; learning modality-specific representations using
unimodal autoencoders, learning a shared cross-modal representation using a multimodal autoencoder, and
finally, training a classifier for segmentation and exercise recognition using the shared cross-modal representation.

4.1.1 Unimodal Autoencoders. Motivated by the demonstrated strong performance of modality-specific archi-
tectures in previous multimodal deep learning works [38, 41], we employ the same late fusing strategy in this
work. We first train separate autoencoder networks for each device and modality to extract modality-specific
representations, and to enable us to pretrain our network on external datasets. This approach is particularly
useful in settings where labelled data is limited, as it is the case with sensor data from wearable devices.

We use a stacked convolutional autoencoder with a bottleneck to force the network to learn a compact modality-
specific representation. CNNs are efficient at learning scale-invariant features and detecting temporal patterns,
which make them well-suited for our task. The autoencoders are constructed in a symmetric fashion, with the
encoder consisting of convolutional and max-pooling layers, and the decoder consisting of deconvolutional and
max-unpooling layers. The rectified linear unit (ReLU) activation function [16] is applied after every convolutional
layer, and after the first two deconvolutional layers. The network configuration for the accelerometer and
gyroscope modalities, and the skeleton modality are given in Table 2 and 3, respectively.

4.1.2 Inertial Sensor Autoencoders. This section outlines how unimodal representations are learned from the
accelerometer and gyroscope data collected from the smartwatches, smartphones and earbud.

We treat the triaxial accelerometer and gyroscope data from the smartwatches and earbud as 1D images with
three channels, corresponding to the X, Y, and Z axis. For the smartphone data we use the magnitude of the
accelerometer and gyroscope readings,

√
𝑋 2 + 𝑌 2 + 𝑍 2, instead of the raw triaxial signal, and hence the smartphone

data only has one channel. Accelerometer and gyroscope readings are dependant on the sensor’s orientation. The
smartwatches and the earbud are worn such that the orientation of the devices are relatively fixed on the body
across all workouts, however, the orientation of the smartphones can vary significantly throughout and across
workouts. This transformation is performed to make our smartphone models invariant to the orientation of the
smartphone. The magnitude of the accelerometer and gyroscope corresponds to the speed of acceleration, and
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Fig. 4. An overview of the proposed activity segmentation and exercise recognition approach. Stage 1: Learn modality-specific
representations using a separate autoencoder for each device and modality. The layers of the inertial 1D convolutional
autoencoder block are used to illustrate that separate autoencoders are used for each device and modality. Stage 2: Flatten
and concatenate the modality-specific representations outputted by the encoder component of each unimodal autoencoder.
Learn a shared cross-modal representation using a fully-connected multimodal autoencoder that attempts to reconstruct
the original inputs from the shared representation. The output vector of the multimodal autoencoder is split along the
concatenation indices, and fed to the decoder component of the corresponding unimodal autoencoder, to reconstruct the
original input, and backpropagate the reconstruction loss. Stage 3: A fully-connected classifier is attached to the learnt shared
cross-modal representation. The entire network is trained for the task of activity segmentation and exercise recognition, with
the pretrained unimodal and multimodal autoencoder weights being fine-tuned.

speed of rotation, irrespective of the direction. This transformation results in a loss of directional information,
but we gain invariance to the orientation of the sensing device. The resulting 1D images for each modality
and device are convolved and max-pooled with 1D filters along the temporal dimension. The accelerometer
and gyroscope data are processed in separate networks to extract modality-specific representations. We do a
network architecture search by using a cross-validation framework to evaluate different network configurations,
including the number of convolutional and deconvolutional layers, the kernel size, the kernel stride, and using
depth (grouped) or regular convolutions. The final network configurations for all three devices and modalities
are given in Table 2.
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Table 2. Stacked convolutional autoencoder network ar-
chitecture for smartwatch and earbud data. The con-
figuration for the smartphone autoencoders only differ
in that the number of channels are divided by a factor
of three, since the smartphone data only has one input
channel. The first two convolutional layers in the ac-
celerometer autoencoder are grouped (G) convolutions,
with the number of groups equal to three. The ReLU
activation function is applied after every convolutional
layer, and after the first two deconvolutional layers. All
the layers use a kernel stride of two.

Layer
Kernel dims
(HxW) Output dims

(C@HxW)Acc Gyr
input - - 3@1x250
conv1 1x11 (G) 1x3 9@1x125
conv2 1x11 (G) 1x3 15@1x63
conv3 1x11 1x3 24@1x32
maxpool 1x2 1x2 24@1x16
unpool 1x2 1x2 24@1x32
deconv1 1x11 1x3 15@1x63
deconv2 1x11 1x3 9@1x125
deconv3 1x11 1x3 3@1x250

Table 3. Stacked convolutional autoencoder network ar-
chitecture for skeleton data. The first two convolutional
layers in the accelerometer autoencoder are grouped (G)
convolutions, with the number of groups equal to three.
The ReLU activation function is applied after every con-
volutional layer, and after the first two deconvolutional
layers. All the layers use a kernel stride of two in the
height dimension, and one in the width dimension.

Layer Kernel dims
(HxW)

Output dims
(C@HxW)

input - 3@150x16
conv1 11x11 (G) 9@75x16
conv2 11x11 (G) 15@38x16
conv3 11x11 24@19x16
maxpool 2x2 24@9x8
unpool 2x2 24@19x16
deconv1 11x11 15@38x16
deconv2 11x11 9@75x16
deconv3 11x11 3@150x16

4.1.3 Skeleton Autoencoder. To incorporate visual information into our model, we use 3D pose information as
one of our input modalities. Our 3D skeleton joint model consists of 17 joints, for which we have the Cartesian
coordinate position for each video frame. The coordinate system used to describe the pose estimate is relative to
the person, with the origin coordinate being at the centre hip joint. We use a skeleton representation proposed
by Ke et el. [25], which involves transforming the 3D Cartesian coordinates, (𝑥,𝑦, 𝑧), to cylindrical coordinates,
(𝑟, 𝜃, 𝑧), as follows:

𝑟 =
√
𝑥2 + 𝑦2

𝜃 = tan−1
(
𝑥

𝑦

)
(1)

𝑧 = 𝑧

Cylindrical coordinates is demonstrated to improve performance over Cartesian coordinates [25]. This im-
provement is attributed to the fact that human motions use pivotal movements, and are therefore best described
by cylindrical coordinates. There is however a limitation with using cylindrical coordinates, that is not discussed
in the original paper [25], namely the angle discontinuity at −180° and 180° of the azimuth component of the
cylindrical coordinate. This causes large jumps in the azimuth signal for potentially very small pivotal movements
which can complicate learning. After the transformation, a reference joint, 𝑅, is chosen, and each joint position is
represented in terms of its relative position to the reference joint. We chose the centre hip joint as the reference
joint since it is a stable and stationary joint, which results in the final skeleton representation being less prone to
noise. Finally the relative cylindrical joint coordinates are aligned into a 3D image. The channels in the image
correspond to the radial, azimuth, and vertical components, the width corresponds to the spatial dimension, and
the height to the temporal dimension. This results in a 𝑁 × 16 × 3 image, where 𝑁 is the sequence length, and 16
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(a) Non-exercise segment.

(b) Squats segment.

Fig. 5. Visualisation of two 10 second segments of the skeleton representation during a non exercise activity, and a set of
squats. The segment has been standardised, and then scaled channel-wise between 0 and 255. The radial coordinate, 𝑟 ,
corresponds to the red channel, the azimuth coordinate, 𝜃 , to the blue channel, and the vertical coordinate, 𝑧, to the green
channel.

is the number of joints, discarding the reference centre hip joint. A visualisation of the skeleton representation is
given in Figure 5, where the repetitive nature of a set of squat repetitions is captured in the form of a repeating
visual pattern.

The skeleton representation enables us to use a stacked convolutional autoencoder model to learn modality-
specific features that capture joint interactions across time. The skeleton autoencoder we propose is very similar
to the autoencoders we use for the inertial sensor streams by using 2D convolution and pooling operations instead
of 1D operations. The model configuration is selected by cross-validating a number of different configurations in
a hyperparameter grid search. Table 3 contains the final network configuration for the skeleton autoencoder.
Our approach leverages the large number of 3D pose estimates in the MM-Fit dataset to train our model just

on skeleton representations. We hypothesise that training our network exclusively on skeleton data will improve
our model as the skeleton representation images differ significantly from natural images, even the low-level
features. This is illustrated by the example skeleton representation shown in Figure 5.

4.2 Multimodal Autoencoder
Once the modality-specific representations have been learnt for each modality and device, the features from the
embedding layer are flattened and concatenated, before being fed into the next stage; the multimodal autoencoder.
The aim of this stage is to learn cross-modal representations that are discriminative for the exercise recognition
task. This is again done through the use of an autoencoder network, but this time using a stacked fully-connected
autoencoder. By using fully connected layers, the network is easily able to intermix features from all modalities.
As can be seen in Figure 4, the architecture structure is symmetric, with the decoder component of the multimodal
autoencoder reconstructing a vector of the same size as the concatenated input vector. The output vector is then
split at the concatenation indices, such that each segment can be reshaped into the same size as its corresponding
modality-specific embedding layer. The reshaped vector segment is then passed on to the decoder module of the
corresponding unimodal autoencoder, which attempts to reconstruct the original input for that modality. The
best network configuration is outlined in Table 4.

4.3 Multimodal Classification
The final stage of our approach is the classification stage, in which the learned cross-modal representations
are fed into a classifier to determine the predicted label for each input segment. Unlike [36], we treat activity
segmentation and exercise recognition as one task, instead of two separate tasks, which simplifies our exercise
logging pipeline. This is done by adding a non-exercise class to the set of exercise classes. The classifier consists
of three fully-connected layers which are attached to the embedding layer of the multimodal autoencoder. The
first two fully connected layers consist of 100 hidden units, and use ReLU as the activation function. The entire
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Table 4. The network configuration for the stacked fully-connected multimodal autoencoder. The inputs are all the modalities
from all the devices, where 12200 = 6 × (3@1 × 250) + 2 × (1@1 × 250) + (3@150 × 16) is the total size of the inputs across all
devices and modalities, and 4288 = 6× (24@1× 16) + 2× (8@1× 16) + (24@9× 8), is the size of the concatenated embedding
features from each modality and device.

Layer Output Units
input 12200
mod_specific_encoders 4288
flatten & concat. embeddings 4288
enc_fc1 1000
enc_fc2 1000
enc_fc3 1000
dec_fc1 1000
dec_fc2 1000
dec_fc3 4288
split 4288
mod_specific_decoders 12200

network is trained end-to-end, fine-tuning the autoencoder weights to specialise the learnt features for the task of
exercise recognition. The cross-entropy loss is backpropagated through the network to update the whole model
parameters.

The signal processing method proposed for RecoFit [36] is inferior to our DL based exercise recognition because
it relies on one shot observations and does not learn from more data available from multiple subjects. Secondly,
the RecoFit solution is designed to operate on only one modality, whereas our multimodal DL approach takes
multiple modalities from multiple devices as input.

4.3.1 Multimodal Zeroing-Out Training Strategy. To learn more robust representations for segmentation and
exercise recognition when data from only a single device is available at test time, we investigate whether
multimodal training can be used to strengthen the unimodal representations. We do this during training by
gradually zeroing out the input modalities that are only available at training time, but still requiring themultimodal
autoencoder to reconstruct all the original inputs. By forcing the network to reconstruct modalities for which it
only sees the input for occasionally, the networkwill learn features that encode information about the relationships
between different modalities. Thus this supplements and strengthens the unimodal features of the device. In
particular, we believe that the less discriminative modalities (from the earbud and smartphone), can benefit from
the data perspectives provided by the other stronger modalities during training.

4.4 Repetition Counting
To count the number of repetitions we implemented a signal processing based approach originally designed for
repetition counting on accelerometer and gyroscope data collected from the upper-arm [36].

This approach relies on identifying periodic peaks and auto-correlations in the data, which are strong indicators
of a repetition. It is assumed that the signal is already segmented. This is preceded by the activity segmentation
and exercise recognition stage.
The multidimensional data (3 axes for accelerometer and gyroscope data, or 16 relative joint positions in

cylindrical coordinates for skeleton data) is first standardised and then smoothed using a third-degree polynomial
Savitzky–Golay filter [45], along each feature dimension. The processed data is then projected onto its first
principal component direction to obtain a 1D signal.
The next stage is to identify peaks, or local maxima, in the processed 1D signal. This is done by simply

comparing neighbouring values in the signal. We sort the list of candidate peaks based on their amplitude, and in
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descending order keep the peaks that have no other higher peak within a minimum allowed threshold distance.
This minimum threshold is chosen independently for each exercise based on an estimate of the minimum amount
of time required to execute one repetition of the exercise.
Next we exclude unlikely peaks using auto-correlation of the signal. The auto-correlation is computed for a

window centred at each peak for lags between the minimum and maximum expected duration of a repetition.
The largest autocorrelation value within this range of lags is chosen to be the period, 𝑃 , at that candidate peak.
Any peaks with smaller amplitudes, and within a distance of 0.75 ∗ 𝑃 from the current peak, are removed.

The final filtering is to remove all peaks that have an amplitude lower than half of the 40th percentile of the
remaining peak amplitudes. The number of remaining peaks is our predicted repetition count.

5 EVALUATION
This section outlines and discusses the evaluation of our proposed exercise logging system on the MM-Fit dataset.
The system is evaluated for exercise recognition and repetition counting. We also present and analyse the
multimodal zeroing-out training strategy.

5.1 Activity Segmentation and Exercise Recognition
We evaluate our proposedmultimodal deep learning approach on theMM-Fit dataset, and compare its performance
to unimodal models, and single-devicemodels. Unimodal models aremodels that only take input from onemodality
and device, for example, accelerometer data from the left smartwatch. Single-device models are models that take
as input all the modalities generated by a single device, for example, accelerometer and gyroscope data from the
left smartwatch. We evaluate the effect of pretrained unimodal autoencodersversus training from scratch. Our
analysis considers two cases, the first is a random split of the entire dataset between training and test sets, and
the second is a leave one participant out split, where the test set contains only samples from participants who are
never included in the training set.

5.1.1 Pretraining Unimodal Autoencoders. This section outlines the experimental setup used to pretrain the
unimodal autoencoders. We trained a total of seven autoencoders, corresponding to the following devices
and modalities; smartwatch accelerometer and gyroscope, smartphone accelerometer and gyroscope, earbud
accelerometer and gyroscope, and skeleton data. The following three datasets were used for pretraining, RecoFit
[36], the Heterogeneity Human Activity Recognition (HHAR) dataset [47], and Human3.6M [8, 24].

The Microsoft RecoFit dataset [36] was used to pretrain the smartwatch accelerometer and gyroscope autoen-
coders. The RecoFit dataset consists of accelerometer and gyroscope data collected at 50Hz from an arm-worn
sensor of individuals working out in a gym. To pretrain the smartphone and earbud accelerometer and gyro-
scope autoencoders we use the smartphone data from the HHAR dataset. The HHAR dataset consists of triaxial
accelerometer and gyroscope data collected from 12 smart device models at different frequencies. Finally, the
skeleton autoencoder was pretrained on ground truth motion capture data from the Human3.6M dataset. The
Human3.6M dataset contains 3D pose information collected from a highly accurate motion capture system at
50Hz.
As a pre-processing step we first downsample all inertial sensor readings to 50Hz, and the 3D pose data to

30Hz. Then the magnitude of the smartphone accelerometer and gyroscope data was computed, and the 3D
pose data was transformed to the skeleton representation form outlined in section 4.1.3. Each dataset was then
randomly split into a train, test, and validation set, using a 70-15-15 split.

To select the network configuration for our stacked convolutional autoencoder we evaluate different network
configurations. The hyperparameter search was carried out separately for each modality, however, we only used
the RecoFit dataset to choose the network configuration for the accelerometer and gyroscope autoencoders. The
assumption is that a similar network architecture would work well across all three devices for the same type of
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modality. The following network configurations were explored; the number of convolutional and deconvolutional
layers, the kernel size, the kernel stride, and using depth (grouped) or regular convolutions. The configurations
with the lowest reconstruction loss on the external dataset’s test set were evaluated on the MM-Fit dataset for
exercise recognition, with the configuration. The highest accuracy one is selected as our final configuration. We
use the results from the autoencoder model hyperparameter search to guide the final model selection for each
modality, with the intuition that models with a low reconstruction loss are able to preserve salient features of
activity data in their embedding layer. The final network configurations are given in Table 2 and 3.
We use 5 second window segments as input to the autoencoders. Instances are randomly sampled from the

training set, using a batch size of 128. Each model was trained for 100 epochs, using an Adam optimiser [27] with
a learning rate of 0.001, and the following exponential decay rates for the moment estimates, 𝛽1 equal to 0.9 and
𝛽2 equal to 0.999. The final weights of the seven autoencoder models are used for exercise recognition on the
MM-Fit dataset.

5.1.2 Unimodal, Single-Device and Multimodal Models. We detail the approach taken to train the exercise
recognition models that leverage the learnt modality-specific representations (pretrained unimodal encoders).
We split the MM-Fit dataset into a train, validation, and two test sets, first containing other samples from

participants seen in the training set, and second with previously unseen participants. The dataset is divided by
assigning each workout session to one of the splits. For reproducibility the workout IDs for each split: train (1, 2,
3, 4, 6, 7, 8, 16, 17, 18), validation (14, 15, 19), seen subject test set (9, 10, 11), cross-subject test set (0, 5, 12, 13, 20).
We use only one RGB-D camera from the MM-Fit dataset.

All the models take a 5 second window segment as input, which corresponds to 250 sensor samples at 50Hz,
or 150 skeleton samples at 30Hz. There is often a trade-off between accuracy and recognition speed [4]. Five
second windows are large enough to capture the repetitive nature of repetitions, whilst also ensuring that the
recognition speed (2.5 seconds in overlapping windows) is acceptable for an exercise logging system. During
training, instances were randomly sampled from all workouts in the training set, using a batch size of 128. At test
time we generated batches using sequential strided sampling, with a stride of 0.2 seconds. This is how the system
would be used in a real-world application. The above experimental setup resulted in 702703 training instances,
25969 validation instances, 40544 test instances, and 58328 cross-subject test set instances. Window segments are
labelled according to the majority class in the segment, which is common-practice for activity recognition.
We determine the number of fully-connected layers, hidden units, and amount of dropout to use for the

unimodal, single-device, and multimodal models through hyperparameter search. The configuration with the
highest validation accuracy is chosen for each model. The best configuration is 3 layers with 100 hidden units, and
no dropout for all three model types. Another hyperparameter search finds the configuration of the multimodal
autoencoder. The final configuration consists of three encoder and three decoder fully-connected layers, with
1000 hidden units, and 1000 units in the embedding layer. The unimodal models are evaluated for exercise
recognition by flattening the embedding representation from the modality-specific autoencoder and attaching
the three-layered fully-connected classifier. The same approach is taken for single-device models, with the only
difference being that the embedding layer from two modalities are flattened and concatenated before attaching
the fully-connected classifier. Finally, the multimodal model is evaluated for exercise recognition by attaching
the fully-connected classifier to the embedding layer of the multimodal autoencoder. In all three model types, the
autoencoder weights are fine-tuned using a lower learning rate than for the fully-connected layers.
All experiments are trained using an Adam optimiser [27] with a learning rate of 0.001, and the following

exponential decay rates for the moment estimates, 𝛽1 equal to 0.9 and 𝛽2 equal to 0.999. For fine-tuning the
pretrained weights, an order of magnitude lower learning rate of 0.0001 is used. A learning rate scheduler is used
to decrease the learning rate by an order of magnitude if the validation metric does not improve for 10 epochs.
The models is trained until convergence.
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Table 5. Multimodal, unimodal and single-device exercise recognition accuracies on the MM-Fit test sets. We evaluate
whether pretraining (PT) boosts performance, and how well each model generalises to unseen test subjects (UTS).

Device Modality Accuracy Accuracy Accuracy Accuracy
(w/o PT) (w PT) (w/o PT, UTS) (w PT, UTS)

All - 99.60% - 96.37%
Camera Skeleton 98.02% 98.78% 94.59% 96.01%

Watch left
Acc 98.39% 98.55% 90.74% 90.79%
Gyr 97.31% 97.54% 89.95% 90.30%
Acc & Gyr 98.87% 98.82% 91.89% 91.74%

Watch right
Acc 98.22% 98.51% 92.72% 91.50%
Gyr 97.02% 97.80% 89.28% 89.34%
Acc & Gyr 98.80% 98.76% 93.81% 91.95%

Phone right
Acc 91.34% 89.63% 82.72% 82.22%
Gyr 86.25% 86.33% 78.26% 79.01%
Acc & Gyr 92.50% 92.09% 84.75% 83.11%

Earbud
Acc 88.61% 88.73% 79.76% 80.06%
Gyr 86.25% 88.27% 81.12% 80.55%
Acc & Gyr 90.55% 91.43% 81.82% 79.90%
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Fig. 6. Confusion matrix for the multimodal model on the MM-Fit test set, for seen and unseen subjects.

The exercise recognition accuracies of our models over the MM-Fit dataset are presented in Table 5, along with
confusion matrices for the multimodal model in Figure 6. The highest accuracies on the two test sets, seen and
unseen subjects, are obtained by the multimodal model with 99.60% and 96.37%, respectively. The skeleton model
is the best performing unimodal model, with 98.78% accuracy on the seen test set, and 96.01% on the unseen
test set. The strong performance of the skeleton model is expected, since the visual information encoded in the
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skeleton sequence data is naturally very discriminative for the exercise recognition task. Incorporating sensor
information into the skeleton model through multimodal learning has marginal benefit.

The next-best performing models are the left and right multimodal smartwatch accelerometer and gyroscope
models, with test accuracies of 98.87% and 98.80%, respectively. The strong performance of the smartwatch
models can be explained by the fact that the smartwatches are involved in the movements of all ten exercises
studied in the MM-Fit dataset. The earbud and right smartphone models perform substantially worse than the
other devices’ models, which is expected since the earbud and smartphone are positioned such that they are not
heavily involved in many of the exercises. The smartphone and earbud show poor classification performance
on exercises with limited head and core movement, such as biceps curls, triceps extensions, shoulder press and
lateral raises, and better performance on, for example, squats and jumping jacks, as observed from the confusion
matrix.
Among the unimodal models we observe that the unimodal accelerometer models consistently outperform

the corresponding unimodal gyroscope model, suggesting that acceleration is more discriminative than angular
velocity for exercise recognition. Fusing accelerometer and gyroscope data, as is done in the single-device models,
further improves exercise recognition accuracy for all devices, demonstrating the benefit of leveraging multiple
data perspectives through multimodal learning.
To evaluate the generalisation ability of our models we tested each model on unseen test subjects (subjects

that were not present in the training data). The results show that our models perform 5-10% worse on unseen
subjects, but still generalising well.

The confusion matrices reveal that the most commonmisclassification case is exercise segments being predicted
as non-exercise segments, in particular on the unseen subject test set. Many of these misclassifications occur at
the ambiguous boundary regions at the start and end of exercise sets, where the window segment contains both
exercise and non-exercise samples. This problem could be alleviated through temporal smoothing of predictions,
for example, only predicting a new activity class if three consecutive predictions are in agreement.
Surprisingly, the effect of model pretraining was not significant for improving model performance on our

exercise recognition task, unlike what is currently understood in the transfer learning community [11]. This is
because our lightweight models (with few parameters) can train from scratch on our sufficiently large dataset
without overfitting. However, in settings where only a small dataset is available for the target task, but where
there are many similar unlabelled instances available, pretraining could still help to improve performance.

5.1.3 Multimodal Zeroing-Out Training Strategy. To learn more robust representations for segmentation and
exercise recognition when data from only a single device is available at test time, we investigate whether
multimodal training can be used to strengthen the unimodal representations. We refer to the device that is used
at test time as the target device.
We initialise the multimodal autoencoder with the pretrained weights of a multimodal autoencoder trained

on all available modalities. For the first two epochs, we randomly select a device (excluding the target device)
to zero out for each batch, and for every following two epochs, we increase the number of devices to zero out.
This process continues until only the target device is not being zeroed-out, at which point we let the network
train for another five epochs. The model is evaluated on the validation set after every epoch, by zeroing out all
the modalities except for the modalities belonging to the target device, and recording the reconstruction loss in
reconstructing all the original inputs. The model with the lowest validation reconstruction loss is selected to
be evaluated for exercise recognition. To evaluate the learnt representation on the MM-Fit dataset for exercise
recognition, three fully connected layers with 100 hidden units are attached to the embedding layer of the
multimodal autoencoder. The model is then trained for exercise recognition, zeroing out all modalities, except for
the modalities belonging to the target device. The model with the highest validation accuracy is selected and
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Table 6. Single-device test accuracies for pretrained models trained using zeroing out strategy, for both seen and previously
unseen test subjects (UTS). Results should be compared with the corresponding single-device pretrained model’s accuracies
in Table 5.

Device Accuracy Accuracy (UTS)
Camera left 97.34% 92.79%
Smartwatch left 99.20% 93.59%
Smartwatch right 98.80% 92.43%
Smartphone right 92.50% 84.20%
Earbud 91.41% 78.68%
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Fig. 7. Repetition counting for a set of ten squat repetitions using gyroscope readings from a smartwatch worn on the left
wrist. The original gyroscope data is shown in the top plot, and the processed 1D signal is shown in the bottom plot, with the
predicted repetitions marked out.

evaluated on the test sets. The experimental setup is identical to the one outlined in section 5.1.2 in terms of
learning rate, optimiser, and batch size.

We trained five models, each with a different target device; left camera, left smartwatch, right smartwatch, right
smartphone, and earbud. The test set accuracies for each of the five models is presented in Table 6. The multimodal
zeroing-out training strategy results in better accuracy for the two smartwatches on the seen test set, and for
the right smartwatch on the unseen test set compared to the corresponding single-device models. However, for
the remaining devices, the test set accuracy is lower when using the zeroing-out training strategy. These results
indicate that the zeroing-out training strategy is not very effective in learning more robust representations to
leverage external data perspectives.

5.2 Repetition Counting
We implement and evaluate the baseline approach for repetition counting on the MM-Fit dataset. Figure 7 presents
an example output of the repetition counting of peaks. Since the repetition counting does not require any training,
we can evaluate this on all the workout sessions. This brings the total number of exercise sets to evaluate on to
616.

The Mean Absolute repetition counting Error (MAE) per set obtained by the peak counting and auto-correlation
method, for each modality and device, are given in Table 7. Table 8 presents the percentage of predictions within
different ranges of the ground truth. The left smartwatch gyroscope modality obtains the lowest MAE, 0.34,
closely followed by the right smartwatch gyroscope, 0.35, and the left and right smartwatch accelerometers, 0.41
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Table 7. The mean absolute repetition counting error per set for each modality and device across all exercises; squats (Sq),
push-ups (Pu), shoulder press (Sp), lunges (Lu), dumbbell rows (Ro), sit-ups (Su), triceps extensions (Te), biceps curls (Bc),
lateral raises (Lr), and jumping jacks (Jj).

Exercises TotalDevice Mod. Sq Pu Sp Lu Ro Su Te Bc Lr Jj
Cam L. Skel 0.05 0.52 0.63 0.03 0.23 0.17 0.33 4.41 0.09 0.26 0.67

Watch L. Acc 0.25 0.6 0.18 0.03 0.22 0.31 0.30 1.73 0.05 0.42 0.41
Gyr 0.19 0.38 0.65 0.60 0.39 0.26 0.19 0.41 0.09 0.26 0.34

Watch R. Acc 0.30 0.62 0.25 0.10 0.22 0.31 0.27 1.78 0.09 0.49 0.44
Gyr 0.25 0.40 0.50 0.56 0.39 0.26 0.27 0.42 0.12 0.35 0.35

Phone R. Acc 1.39 0.43 1.78 0.31 1.23 2.43 2.64 3.02 2.07 1.14 1.64
Gyr 3.31 0.77 1.30 1.16 0.67 2.72 1.80 1.36 1.50 1.46 1.61

Earbud Acc 0.50 1.00 1.52 0.42 1.80 1.03 0.83 1.98 1.48 2.75 1.31
Gyr 1.11 1.22 1.18 0.85 1.59 0.75 0.81 1.98 1.36 2.46 1.31

Table 8. The percentage of exercise sets for which the predicted repetition count is exact, within 1, or within 2 of the
ground-truth repetition count, for each modality and device. The percentages in brackets for the skeleton modality, are the
results obtained when ignoring biceps curls.

Device Modality Exact Within 1 Within 2
Camera left Skeleton 69.81% (76.84%) 89.77% (98.20%) 90.91% (99.46%)

Smartwatch left Acc 72.73% 94.16% 96.59%
Gyr 73.38% 96.27% 98.21%

Smartwatch right Acc 73.05% 93.83% 95.62%
Gyr 71.92% 96.59% 98.70%

Smartphone right Acc 41.40% 65.10% 75.81%
Gyr 30.68% 66.40% 82.95%

Earbud Acc 39.45% 68.18% 80.52%
Gyr 37.66% 68.34% 81.33%

and 0.44, respectively. The predictions made using phone and earbud data are significantly worse compared to
those made using the watch and skeleton data. This is expected since the phone and earbud do not capture the
central movements of many of the exercises due to their position (for example biceps curls, rows, and triceps
extensions). Surprisingly, the skeleton modality obtains a MAE which is over two times greater than the best
performing modality, the left smartwatch gyroscope. This is surprising since intuitively the skeleton sequence
data should be the most informative irrelevant of which body parts are involved in the exercise. Analysing the
results further by looking into the performance at the exercise level (Table 7), reveals that the skeleton modality
struggles to count biceps curls, but performs well on all the other exercises. The reason for the skeleton modality’s
poor performance on counting biceps curl repetitions is explained by Figure 8. The processed signal obtained
using the implemented approach defines one bicep curl repetition as two alternating curls (one for each arm). This
highlights an ambiguous case of how a repetition should be defined; is one curl a repetition, or are two alternating
curls one repetition? Ignoring the biceps curl exercise results in a MAE of 0.26 for the skeleton modality, which is
on level with the performance of the smartwatch models.

The results we obtain are in line with the results reported by Morris et al. for repetition counting on the RecoFit
dataset [36]. They obtain a MAE of 0.26 across 160 sets for 26 different exercises. Their predictions were obtained
using data from a right-arm worn accelerometer sensor. They obtain exact predictions in 50% of the sets, within-1
in 97% of the sets, and within-2 in 99% of the sets, which can be compared to our right watch accelerometer, exact
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Fig. 8. Processing the skeleton modality as signal for repetition counting on a set of biceps curls, with the predicted repetitions
marked out (using the method of [36]). This miss-counts by ignoring the alternating hand in the exercise set.

72%, within-1 97%, and within-2 99%. We find gyroscope data to be more useful for repetition counting than the
accelerometer, although by a small margin.

5.3 Discussion
The repetition counting solution is efficient, but it has a few limitations. One limitation is that a minimum and
maximum repetition duration threshold needs to be manually chosen for each exercise. The performance is
sensitive to how accurate these thresholds are, and also entails that the approach is not invariant to the rate at
which repetitions are performed. Another limitation is that the method is heavily reliant on accurate segmentation
and classification in order to obtain good results. Finally, the method relies on simple heuristics based signal
processing techniques, and does not learn a high-level representation of what constitutes a repetition. This
problem is exemplified by its behaviour in counting bicep curl repetitions on smartwatch data. Intuitively one
would expect the repetition counting method to estimate five repetitions for a set of ten alternating biceps curls
since the smartwatch registers the curls from one of the arms. However, the method often predicts ten or close
to ten repetitions in these scenarios. This is because the assumptions supplied to the model about how long a
biceps curl repetition should last causes the model to interpret the small peaks in between the actual repetitions
as corresponding to repetitions. These peaks could be just noise but the method can not distinguish between
actual repetition peaks and random peaks. Adaptive methods to learn variations in repetitions are required for
more confident repetition counting.

6 CONCLUSIONS
In this work, we developed the components of an automatic exercise logging systems, comprising of activity
segmentation, exercise recognition and repetition counting. These are built on multimodal deep learning methods
to extract relevant information from across multiple devices and multiple sensing modalities.
We evaluate our technical solution on our newly collected and annotated MM-Fitdataset – a substantial

dataset of 21 full-body workout sessions with 809 minutes across 10 participants, comprised of RGB-D video,
inertial sensing, and pose estimate data. Our proposed multimodal architecture achieves 96% accuracy across all
modalities, 94% for the smartwatch, 85% for the smartphone and 82% for the earbud device on the MM-Fitdataset.
The benefit of our multimodal learning approach is also seen in the performance boost observed across all sensing
devices when fusing their accelerometer and gyroscope modalities, and for the support provided by additional
perspectives available during training time. Finally, we implement a strong repetition counting baseline. We find
that the best performing modality for repetition counting is the smartwatch gyroscope, with a mean absolute
prediction error per set of 0.34 on our MM-Fit dataset.
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