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ABSTRACT

The environmental context of a mobile device determines where/how
it is used, which can be exploited for efficient operation and better
usability. In this work we describe a general method using only the
lightweight sensors on a smartphone to detect if a device is indoor
or outdoor. Using semi-supervised machine learning techniques,
our method automatically learns characteristics of new environ-
ments and devices, thereby achieves detection accuracy of over
90% even in unfamiliar circumstances. Therefore, it easily outper-
forms existing indoor-outdoor detection techniques based on static
algorithms, or relying on energy hungry and unreliable GPS.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]: Signal
processing systems; D.4.8 [Performance]: Modeling and predic-
tion

General Terms

Design, Experimentation, Performance

Keywords

context detection; indoor-outdoor; smartphone sensing; machine
learning

1. INTRODUCTION

With rapid adoption of smartphones, context sensing/detection is
becoming increasingly important to enable new and sophisticated
context-aware mobile apps. There are various forms of context con-
cerning a mobile user including location, environment, time and ac-
tivity. While time is straightforward to identify with a smartphone,
other aspects of context are harder to determine and require more
advanced integration of several inbuilt sensors on modern smart-
phones.

The focus of this work is on detecting whether a user is indoor
or outdoor, an aspect of environmental context, which we refer to
as the Indoor-Outdoor (10) Detection problem. This user context
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information is important for a variety of applications including per-
sonalization applications (change volume, screen brightness, ap-
plication shortcuts), power saving (turn off GPS indoors, turn off
WiFi radio outdoors) and reminders. Currently, there are two exist-
ing techniques for IO detection. One is based on GPS and uses the
drop in confidence or inability to obtain a fix as a cue to infer that
the user is indoors (e.g., [3, 4]). The other called IODetector [5]
combines estimations from cell signal, light and magnetic intensity
based features.

In this work, we first experimentally examine the effectiveness
of these two techniques in different real-world settings in detail,
and find that neither of them provides satisfactory results. GPS is
unreliable because it is sometimes possible to get GPS fix while
indoors and not get it in some outdoor locations. More crucially,
GPS is among the most energy hungry smartphone sensors. On the
other hand, the accuracy with IODetector is quite poor because it
does IO detection using fixed thresholds for sensor features that are
not appropriate across different environments.

Motivated by the above observations, we propose a new approach
to IO detection that is based on semi-supervised learning. Under-
lying our proposal is a model that continuously adapts as the user
visits new environments, with characteristics distinct from those
seen previously, by obtaining new training data on the fly without
user involvement. Like IODetector, it still relies only on low power
sensors and can be fully implemented on the phone. As a result, it
overcomes the limitations of existing techniques. Specifically, our
method can achieve very high accuracy (greater than 90%) across
diverse and unseen environments while being energy-efficient.

2. PREVIOUS SOLUTIONS
2.1 GPS based Indoor-Outdoor detection

GPS signals are usually available outdoors where the sky is di-
rectly visible, and are often weak or unavailable indoors when the
sky is obscured by ceiling and walls. Thus, the estimated accuracy
of GPS localization can be used to detect if a user is indoors [3].

The primary drawback of GPS is that it is among the most energy
hungry sensors on the phone. We observed that with a power con-
sumption of 370mW, the GPS uses one order of magnitude more
power than the microphone, the magnetic and the light sensors, and
up to two orders of magnitude more power than the accelerometer
and the battery thermometer, for continuous sensing.

Moreover, GPS can sometimes get a satellite fix indoors (e.g.,
when the user is close to a door or window), which reduces its
reliability as an indoor-outdoor classifier. In our experiments we
found that indoor/outdoor state can be correctly determined with
an accuracy around 70-80%, even with a carefully chosen threshold
on GPS localization accuracy as shown later.
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Figure 1: Illustration of cases where IODetector components (light, magnetic and cell) fail to correctly distinguish between indoors
and outdoors. (a) The light intensity is always below the threshold. (b) The magnetic variance is low indoors. (c) The cell signal
strength decreases slowly for cell component to detect transition. (d) The cell component detects transitions indoors while moving
between rooms due to rapid signal variations. Background shaded (non-shaded) portions in the figures indicate actual ground truth,

indoor (outdoor).

2.2 10Detector

IODetector [5] is a recent work that uses low power sensors
available on smartphones (light, cell radio and magnetic field sen-
sors) to determine indoor, outdoor and semi-outdoor states. Each
of these three sensors works independently to estimate a state and a
confidence value. The final state is determined after adding all the
confidence values.

Fundamentally, IODetector is built based on some experimental
observations: (1) In daytime, in outdoors, light intensity is typi-
cally above 2000 Lux; (2) When the user’s context changes from
outdoors to indoors, the cell signal strength drops rapidly due to
attenuation from walls and ceilings; and (3) Magnetic field sensed
by the phone tends to change rapidly when the user is moving in-
doors where there are possibly many appliances, electric currents
and metallic objects nearby, compared to outdoors.

These observations may hold in some cases, but we find that they
do not hold always and across different environments. Because
IODetector has hard-coded thresholds for all the three components
(light, cell and magnetic), the system is invariant to changes in rel-
evant factors like environments, weather conditions, seasons, lat-
itude and devices, which ultimately hurts the accuracy of the 10
detection.

Figure 1 presents some cases where the IODetector components
fail to detect the right IO state because of the non-adaptive nature of
their respective thresholds. In figure 1(a), even though the light in-
tensity changes drastically at the transition from outdoor to indoor,
the component fails to distinguish between the two states because
the light level is always below the threshold, even outdoors. In
figure 1(b), the magnetic variance is below the threshold for most
of the time, both indoors and outdoors. The cell signal decreases
when moving from outdoor to indoors in figure 1(c), but the speed
with which this happens is too slow for the component to detect the
transition. On the other hand, in figure 1(d) the cell component er-
roneously detects IO transitions when moving between the rooms
of the same building.

3. ROBUST INDOOR-OUTDOOR DETEC-
TION WITH SEMI-SUPERVISED LEARN-
ING

In this section, we present a novel, adaptive IO detection ap-
proach that overcomes the problems due to static thresholds as with
IODetector, while at the same time avoids the use of energy-hungry
sensors like GPS and Wi-Fi. Moreover, unlike IODetector, we are

interested mainly in the basic states, which are indoor and outdoor,
since these are the ones most relevant to context-aware applica-
tions. A semi-outdoor state considered in IODetector system is
difficult for many applications to interpret since the environment
characteristics for this state are unpredictable. Indoor/outdoor tran-
sitions are objectively defined, by crossing a threshold such as a
door, but the determination of a state to be semi-outdoor is fairly
subjective. This makes it difficult to obtain meaningful ground
truths from users to evaluate the reliability of a method using semi-
outdoor state.

Specifically, we employ a semi-supervised learning approach,
which targets situations where obtaining annotated information with
the ground-truth is impractical or expensive to obtain [6]. An addi-
tional advantage of semi-supervised learning techniques is that sub-
tle differences between classes, possibly unobservable in a small
amount of training data with actual ground truth information (re-
ferred henceforth as labeled data), are more likely to be detected
and exploited to achieve more reliable classification.

Among the several most commonly used semi-supervised tech-
niques (e.g., self-training, co-training), we experimentally found
co-training [1] to be most effective for the IO detection problem
(details omitted due to space restrictions). Co-training is a method
where two classifiers work in parallel to improve predictions. These
classifiers work with different sensor features to gain different per-
spectives and uncover different patterns. That is, each data point
is classified by 2 different classifiers working with different fea-
tures/attributes and the result with higher confidence is used to re-
train and improve both classifiers. The two perspectives underlying
the co-training approach based on different feature sets ensure that
the training of classifiers is not affected by same biases. The idea
behind co-training is shown schematically in Figure 2. See [6, 2, 1]
for more details.

Note that supervised learning based classifier approach has the
same fundamental limitation as IODetector in that a supervised
learning based classifier model trained in one environment may not
be accurate in other environments. While collecting labeled data
to train in each new environment would make supervised learning
approach work but will be impractical. Semi-supervised learning
approach essentially overcomes this problem by generating labeled
data on the fly without user involvement.

3.1 Data collection

In addition to the features used by IODetector (magnetic vari-
ance, cell signal strength, light intensity, proximity sensors and
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Figure 2: Co-training with 2 classifiers operating with different
feature sets. The higher confidence classification for each data
is used as the training label to improve classification.

time of day), our method relies on a slightly more expanded set
including other light weight features: battery temperature and mi-
crophone detected noise amplitude.

To evaluate our semi-supervisied learning (co-training) approach,
using a custom Android app, we collected more than 3800 sam-
ples of sensor data with a fair distribution between three environ-
ments: university campus, city center and residential area. To as-
sess the accuracy of different approaches, the Android app relies on
an interface for volunteers who participated in the data collection
to manually input (indoor/outdoor) ground-truth information.

3.2 Feature ranking and selection

In building the two classifiers for co-training, we balanced the
feature sets in terms of reliability. We ranked the features using
different machine learning techniques and then split them into two
sets with a fair distribution. Using Naive Bayes analysis of feature
importance, we determined the following distribution: Setl: {light
intensity, time of the day, proximity value and battery temperature }
and Set2: {sound amplitude, cell signal strength, magnetic vari-
ance}. Using the SVM Attribute ranking we balanced the two sets
into: Setl: {cell signal strength, light intensity, time of day and
proximity value} and Set2: {battery temperature, sound amplitude
and magnetic variance}. We then evaluated the performance of
each of these two feature distributions as part of the classifiers in
the co-training approach.

3.3 Evaluation of Co-training

For our co-training method, we chose a small number of la-
beled instances (300) from one environment (campus) plus 1000
unlabeled instances from the other two environments. For each
instance, the system takes the higher confidence classification to
be the inferred label for re-training (see Fig. 2). Table 1 presents
the accuracy of different configurations of the co-training method
with 1200 completely separate instances used for evaluation spread
across different environments. The best performance was obtained
by a combination of Naive Bayes classifiers using a distribution of
features based on the SVM ranking.

In a direct comparison with the previous solutions (IODetector
and GPS) and a supervised learning approach (with 300 labeled in-
stances from campus environment for training), our solution using
co-training with SVM Attributes distribution has better results by
at least 10% (Table 2). These results do not capture other advan-
tages of our approach that include: similar energy consumption as
IODetector method; model adaptation without user involvement;
and fully implementable on the phone.

Features Classifier 1 Classifier 2 || Performance (%)
Distribution Co-training
Naive Bayes J48 J48 83.0

based LWL LWL 78.17
Naive Bayes | Naive Bayes 91.66

SVM Attribute 148 148 86.67
ranking based LWL LWL 78.16
Naive Bayes | Naive Bayes 93.33

Table 1: Accuracy with different configurations of co-training
method.

| Solution | Performance (%) |
GPS 75.23
IODetector 35.74
Supervised learning 81.29
Co-training (SVM Attr.) 93.33

Table 2: IO detection accuracy for previous solutions (GPS,
IODetector), supervised learning on IOQDetector features and
our co-training method.

4. CONCLUSIONS

We have considered the problem of determining whether a user
is indoors or outdoors using low power sensors readily available
on modern smartphones. We show that existing solutions are too
energy hungry or fail to provide accurate results across a range
of environments user may typically encounter, due to the use of
fixed environment agnostic thresholds in the underlying estimation
schemes. To address the fundamental issue of model adaptation on
the fly transparent to the user, we employed a novel approach based
on semi-supervised learning (specifically, co-training technique).
Our adaptive solution not only outperforms existing techniques but
also supervised learning based classifier approach. In on-going and
future work, we intend to demonstrate the value of our proposed
approach in the context of various use cases.
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