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Abstract—WiFi in indoor environments exhibits spatio-
temporal variations in terms of coverage and interference in
typical WLAN deployments with multiple APs, motivating the
need for automated monitoring to aid network administrators
to adapt the WLAN deployment in order to match the user
expectations. We develop Pazl, a mobile crowdsensing based
indoor WiFi monitoring system that is enabled by a novel
hybrid localization mechanism to locate individual measurements
taken from participant phones. The localization mechanism in
Pazl integrates the best aspects of two well known localization
techniques, pedestrian dead reckoning and WiFi fingerprinting; it
also relies on crowdsourcing for constructing the WiFi fingerprint
database. Compared to existing WiFi monitoring systems based
on static sniffers, Pazl is low cost and provides a user-side
perspective. Pazl is significantly more automated than wireless
site survey tools such as Ekahau Mobile Survey tool by drastically
reducing the manual point-and-click based measurement location
determination. We implement Pazl through a combination of
Android mobile app and cloud backend application on the Google
App Engine. Experimental evaluation of Pazl with a trial set of
users shows that it yields similar results to manual site surveys
but without the tedium.

I. INTRODUCTION

Significant interest in mobile phone sensing in recent years
can be attributed to several factors, including: their ubiquitous
nature; rapid evolution toward smartphones with several built-
in sensors; carried by humans, making them natural to be
used for “mobile” sensing; and the possibility of leveraging
the cloud via several available connectivity options for com-
puting power, storage and “centralization”. Not surprisingly
then, mobile phone sensing applications have been realized or
envisioned in diverse domains (e.g., transportation, social net-
working, health monitoring) [1], [2]. When a group/community
of participants (a crowd) is engaged with suitable incentives,
mobile phone sensing becomes even more compelling for
continual and fine-grained spatio-temporal monitoring of the
phenomenon of interest in a cost-effective manner. Indeed, as
Xiao et al. note in [3], the focus of mobile sensing research and
applications is shifting towards mobile crowdsensing, which is
defined as “individuals with sensing and computing devices
collectively share data and extract information to measure
and map phenomena of common interest” [4]. Several mobile
crowdsensing applications have been developed and deployed
(e.g., [5], [6]) and it remains a very active area of research.

We consider the application of the mobile crowdsensing
paradigm to wireless network monitoring. Besides the many
sensors, modern mobile phones feature several wireless net-
work interfaces as connectivity options (e.g., cellular, WiFi,
Bluetooth, NFC). Discussions of mobile phone sensing have
been mostly centered around the use of built-in sensors and/or

specialized add-on sensors (e.g., GasMobile [5], CellScope1,
NETRA2) with connectivity options serving as a means for
data sharing (see [2], for example). We expand this commonly
held view to treat network interfaces also as sensors. GPS,
which is an integral part of all smartphones today, presents
an example of a network interface that sits at the boundary
of these two views — GPS is seen as a location sensor for
mobile phone sensing applications whereas it is actually a RF
communication system in which GPS receiver on a phone uses
signals transmitted from satellites for localization3. Another
more obvious example is the use of cellular interface on smart-
phones for crowdsourcing based active/passive measurement of
mobile networks as in [7], [8].

In this paper, we apply the mobile crowdsensing paradigm
for low-cost and automated indoor WiFi monitoring. Specifi-
cally, our focus is on indoor environments with multitude of
access points (APs) as is the case with WiFi deployments
in enterprises and public buildings (e.g., shopping malls,
hospitals). This application exploits the WiFi interface on
smartphones as a measurement sensor. It is motivated by
the observation that WiFi networks experience a range of
coverage and interference related problems that affect users
and these problems vary over space and time. Having a system
for spatio-temporal WiFi monitoring at low cost allows the
network administrators to better manage their wireless LANs
and optimize user experience. Towards this end, we develop
Pazl, a mobile crowdsensing based indoor WiFi monitoring
system. The main challenge underlying the design of Pazl
is the need to locate measurements taken from smartphones
and the difficulty of indoor location and navigation — GPS
does not typically work indoors and is known to be energy
hungry even when it does work. We address this challenge
via a novel hybrid localization mechanism in Pazl that also
embraces crowdsourcing.

Pazl advances the state of the art on WiFi monitoring in
two important ways: (1) compared to WiFi monitoring systems
based on statically positioned sniffers (e.g., DIST [9]), Pazl
is not only lower cost leveraging people’s smartphones and
their movements but also complementary in the sense that
it captures the vital user/client side perspective as opposed
to the AP side or monitoring system perspective. (2) with
respect to wireless site survey solutions (e.g., Ekahau Mobile
Survey [10]), Pazl significantly lessens the need for manual
point-and-click approach for identifying measurement location,

1http://cellscope.berkeley.edu/
2http://web.media.mit.edu/∼pamplona/NETRA/
3Technical specifications of some smartphones do acknowledge this view.

See http://www.samsung.com/global/galaxys3/specifications.html, for exam-
ple.



thereby paving the way for automated monitoring.

This paper makes the following key contributions:

• We provide evidence for spatio-temporal variability
in coverage and interference characteristics of WiFi
networks from a user-perspective that motivates au-
tomated monitoring. This is done via measurements
obtained for a large WiFi deployment consisting of
several tens of APs spread across 6 floors of the
Informatics Forum building in Edinburgh, UK (section
III).

• We design a hybrid indoor mobile phone localization
mechanism (section IV) that combines the best aspects
of two well-known localization techniques, pedestrian
dead reckoning (PDR) and WiFi fingerprinting, nei-
ther of which is sufficient by itself for our purpose
— location error accumulates over time with PDR
especially when based on smartphone sensors and in
indoor environments with complex human activities
such as using the stairs, whereas WiFi fingerprinting
does not work when there is no WiFi coverage which
is of interest from a monitoring viewpoint. A key
feature of our localization mechanism is that it exploits
the locations deemed to be accurately localizable
via WiFi fingerprinting for correcting PDR based
location estimates. The reference fingerprint database
required for WiFi fingerprinting is also constructed in
a crowdsourcing manner in our proposal. We show
that our localization mechanism achieves a median
location accuracy below 3 meters in a building of
approximately 12000 m2 spread over 5 floors (section
V.A).

• We develop Pazl, a mobile crowdsensing based in-
door WiFi monitoring system that incorporates the
above mentioned hybrid localization mechanism. The
implementation of Pazl consists of two parts: (1)
an Android application for collecting WiFi and sen-
sor (accelerometer and compass) measurements from
each mobile crowdsensing participant’s smartphone;
(2) a cloud application based on the Google App
Engine to localize the measurements from different
phones and to merge, store, visualize and analyze
for various monitoring related aspects (e.g., coverage
holes, channel usage distribution, complex interference
patterns resulting from exceptionally long range of
some APs as seen from certain locations). Through
a user trial, we experimentally evaluate Pazl and find
that it provides similar results to the state of the art
Ekahau Mobile Survey tool [10] but in a significantly
more automated manner by drastically reducing the
manual point-and-click location determination used in
the Ekahau approach (section V. B).

II. RELATED WORK

A. WiFi Monitoring and Site Surveys

Monitoring WiFi networks (802.11 wireless LANs) has
received much attention from the research community (see [9]
and references therein). The current state of the art approach as
exemplified by DIST [9] is to deploy a number of stationary

sniffers (also called air monitors) separate from the WLAN
infrastructure. Similarly, WizNet [11] employs many cheap
ZigBee sensors in conjunction with digital signal processing
techniques to tell apart between 802.11 and other signals.
This stationary sniffer approach gives greater visibility and
flexibility compared to the earlier approaches of relying on
management information obtained from APs or observing the
wired side of APs using SNMP, syslog and packet sniffing.
However, it can be quite expensive and justified when the
focus is on security which indeed is the case for most ad-
vanced WLAN monitoring systems like DIST. Also for the
stationary sniffer approach to capture the user perception of
WiFi networks, the density of sniffers has to be very high.
Smart APs which are the norm today also cannot capture the
user-side view despite the sophisticated spectrum sensing and
centralized intelligence they are equipped with.

In [12], the authors argue in favor of a client-side perspec-
tive which can lead to better understanding of the actual cover-
age and interference conditions (due to interference within the
WLAN, from other co-located WLANs and interference from
non-WiFi devices using the same spectrum such as bluetooth,
microwave ovens and cordless handsets). The latest 802.11
standard [13] incorporates wireless LAN radio measurements
support (which were originally introduced in 2008 as part of
802.11k substandard) to get client side measurement reports
to assist with seamless mobility etc. but they have two key
limitations from our perspective: (1) there is no solution
specified to localize measurements from clients indoors; (2)
requesting client side reports from the associated AP fails in
cases where the client is in an area with no coverage.

Wireless site survey is another relevant process, which
is concerned with designing and planning a WiFi network
by identifying the number and locations of APs prior to
deployment as well as post-deployment walk-testing, analysis
or diagnosis of an existing WLAN [14], the latter more related
to monitoring and thus this paper. Many software and hardware
tools exist to assist with wireless site surveys. Some of them
are offline tools based on models such as AirTight Planner4 for
predictive surveys to estimate coverage for a given placement
of APs. A prominent example of an online site survey tool
that is closely related to our work is the Ekahau Mobile
Survey [10], which we use as the benchmark for our Pazl
system. Different from Pazl, the Android based Ekahau Mobile
Survey app targets the single user case and also requires the
user to repeatedly point-and-click their location on a floor map
while walk testing. In [15], a robot based spectrum survey
system called Sybot is proposed where the main focus is on
reducing the measurement effort. In contrast, Pazl offers a
low cost, less disruptive and continual monitoring alternative
by leveraging the smartphones carried around by mobile users
in the monitored environment.

While monitoring and site surveys could in general involve
active measurements for analyzing WLAN performance, in
Pazl we limit ourselves to passive monitoring via WiFi scans,
which are sufficient to diagnose most coverage and perfor-
mance oriented WLAN problems; we do this to keep disruption
and battery drain to crowdsourcing participants minimal.

4http://www.airtightnetworks.com/home/products/AirTight-Planner.html



B. Indoor Mobile Phone Localization

Common presence of sensors such as accelerometers and
compasses in smartphones have made pedestrian dead reck-
oning (PDR) [16] an attractive technique for mobile phone
localization. While some systems combine PDR with a map
to avoid war driving for localization in areas away from roads
and streets outdoors [17], others such as GAC combine it
with occasional GPS correction for energy-efficient location
tracking on roads [18]. A well-known limitation of PDR
schemes is that error accrues over time unless it is corrected
by a more reliable reference in between.

WiFi fingerprinting is another well-known localization
technique that can exploit the presence of WiFi interfaces now
common on smartphones. WiFi infrastructure is also prevalent
these days in many indoor environments. Early WiFi finger-
printing systems such as RADAR [19] and Horus [20] rely on
an initial training phase to construct fingerprint database for
use as a reference in the positioning phase later. As the training
phase can be quite time consuming and expensive, more
recent WiFi fingerprinting systems make this training phase
automated via crowdsourcing using mechanisms of increasing
sophistication (e.g., Redpin [21], OIL [22], WiFi-SLAM [23],
Zee [24]). An obvious limitation of WiFi fingerprinting is that
it works only where there is WiFi coverage. Moreover, for
navigation and continuous location tracking, repeated WiFi
scanning can be both energy and time consuming (around 1W
and ∼500ms per scan).

Combining PDR with WiFi fingerprinting to overcome
the above mentioned limitations of both has been considered
recently in [25] and [26]. The UnLoc system [25] combines
the use of inertial sensors (accelerometer, compass, gyroscope)
with the notion of natural and organic landmarks that are
learnt over time for indoor navigation. While the use of
WiFi fingerprinting in UnLoc is limited to identifying organic
landmarks based on radio environment, Pazl uses it more
softly and continuously with the aid of a particle filter to
opportunistically correct PDR errors. In [26] the use of WiFi
fingerprinting, also to correct PDR, is limited to only those
locations where maximum signal strength is seen. While both
[25] and [26] use a basic PDR scheme, Pazl incorporates a
more sophisticated version with activity recognition capability
that would be needed in more complex environments (e.g.,
multi-floor buildings with elevators and stairs to move between
floors). Moreover, unlike [25] and [26], for the PDR Pazl uses
only accelerometer and compass for the PDR which are present
in almost every smartphone, thus achieving wider applicability.

III. MOTIVATION

We observed the WiFi network behavior in the Informatics
Forum building at Edinburgh University with several tens of
APs deployed for campus WLAN and other APs (from testbeds
and co-located wireless networks) spread across 6 floors. The
dynamism of the WLAN is obvious when looking at the
varying number of APs that can be observed over a period
of a few days (Figure 1). There is a clear pattern showing the
number of APs decreasing over the night hours and increasing
during the day, matching typical usage patterns.

We used the Ekahau mobile site survey application to
determine the WLAN coverage on a floor (Figure 2). We found

Fig. 1: Number of active APs detected at a single location
over a long period of time.

that some areas, indicated with red color, have poor signal
reception or no coverage at all. While most of these places are
near metallic staircases or heavy concrete walls, to our surprise
poor coverage is seen near some offices where we expect good
signal reception.

Fig. 2: Coverage map obtained with the Ekahau Mobile
Survey tool.

(a) Channel usage across all sampled
locations on a floor.

(b) Channel usage seen at a
certain location.

Fig. 3: AP channel distribution.

Channel usage distribution is an aspect that indicates the
potential amount of interference experienced by clients operat-
ing on different channels. Figure 3(a) shows the density of APs
per channel in both 2.4GHz (channels 1, 6 and 11) and 5GHz
bands across an entire floor. Even though the channel usage
is quite uneven and thus not ideal, we notice something even
more interesting at certain locations. For example, the observed
channel usage distribution in one of the offices situated on the
inner ring of the building is shown in Figure 3(b). Channels 1
and 11 are heavily used compared to channel 6 in the 2.4GHz
band, and the four strongest APs are in channels 1 and 11.



APs with unusually long transmission range can interfere
with many other APs operating on the same channel, thus
having an adverse effect on WLAN performance. This could
be a result of the building environment (material, layout, etc.)
as well as AP configuration settings (e.g., high transmission
power). We have conducted a manual WiFi site survey for the
entire building and determined the physical 3D distance each
AP reaches in the building (Figure 4). We observed median
coverage radius of about 45 meters. The exception was an AP
sensed in all locations measured, and reaching as far as 76
meters. From closer inspection, we identified that this was an
experimental AP temporarily setup for research purposes. In
practice, similar effect could also result due to the nature of
the radio propagation environment.

Fig. 4: CDF5of coverage range of all APs.

The above observations highlight the spatio-temporal dif-
ferences in coverage and interference in typical WLAN settings
with multiple APs and in turn motivate the need for automated
monitoring systems. We describe Pazl, our low-cost solution
towards this end, in the next section.

IV. PAZL DESIGN AND IMPLEMENTATION

A. Pazl Hybrid Localization Mechanism Overview

As noted at the outset, the key challenge underlying the
design of a low-cost and automated indoor WiFi monitoring
system based on mobile crowdsensing is locating each mea-
surement. We design a hybrid localization mechanism (illus-
trated in Figure 5) to address this challenge. Phone’s sensors
(accelerometer, compass and WiFi interface) collect samples of
acceleration, orientation and WiFi scans. Acceleration is used
by the Activity Classification component to detect the activity
performed by the user. If this activity is location specific, Map
Knowledge aids in estimating the location. Acceleration and
Orientation are used in the Pedestrian Dead Reckoning (PDR)
component to track the continuous movement. Finally, a WiFi
fingerprint is extracted from a WiFi scan and compared with
those in a fingerprint database (also created via crowdsourcing)
for closest matches in signal space. Locations associated
with those matches in the database are used to estimate the
location of the user at the moment of scan. All these different
estimations are merged using a particle filter to return a single
location estimation.

Next, we present the two main components of the hybrid
localization mechanism in Pazl: the pedestrian dead reckoning

5Cumulative Distribution Function

Fig. 5: Schematic of the hybrid localization mechanism.

based continuous location tracking and the WiFi fingerprinting
component.

B. Pedestrian Dead Reckoning (PDR)

The PDR method tracks a pedestrian user by starting
from a known location and estimating consecutive positions
based on traveled distance and direction. To limit the error
accumulation caused by noisy sensors and erroneous inferences
about user’s activities (e.g., walking vs. going on stairs),
repeated corrections to the trail are needed.

Knowing the layout of the building provides the oppor-
tunity to make those corrections. Map Knowledge can pro-
vide the information to restrict the possible directions of the
movement. For instance, walking on a corridor is typically
done in a straight line and minor interferences of electronic
equipments with the phone’s compass can be corrected. If
compass deviation suddenly gets close to a right angle, the
system infers that the user has left the corridor, either to go
into a room or made a turn to another corridor. The closest
door or corner is then associated with the user’s location.

Moreover, the map can also provide a location estimation
based on the context of the user’s movements (as in [27]).
Certain activities like going up or down stairs or taking
an elevator can be performed in precise locations inside a
building. An Activity Classifier can identify these instances
(landmarks) and assist in correcting the location estimation. In
order to identify these landmarks, we first classify the user’s
movement. Most activities are performed similarly every time
and their acceleration patterns can help to recognize them.
Different orientations of the phone can still result in the same
acceleration magnitude given by:

a =
√
a2x + a2y + a2z − g (1)

where g is the Earth gravity, ax, ay and az represent the
acceleration detected along the three orthogonal axes.

To cover for different situations of carrying a phone, we
consider two most likely cases of carrying a phone, in hand and
in pocket. While walking with the phone in hand has a simpler
acceleration pattern (Figure 6(a)), walking with the phone in



(a) Phone in hand. (b) Phone in pocket.

Fig. 6: Acceleration pattern when walking (raw acceleration
with blue and filtered acceleration with red).

pocket transfers a lot of vibrations to the phone when the leg
with the pocket steps (Figure 6(b)). However, for both cases, a
step counting method with a suitable chosen threshold is used
to detect steps and thus the walking speed. Step counting is
also employed to determine the change of levels when using
the stairs, Figure 7.

Fig. 7: Going down the stairs acceleration pattern.

Elevator movements present a specific pattern, with signif-
icant accelerations when the elevator starts and stops (Figure
8). The number of floors traveled is obtained from the time of
the elevator movement (as in [28]).

Fig. 8: Elevator acceleration pattern.

We evaluate the activity classification component using
sample acceleration patterns for different activities from two
participants. These samples serve as training as well as test
data for different classifier algorithms implemented in the well-
known machine learning toolkit Weka6. In our evaluation, the
training set consisted of 166 instances of activities from two
participants annotated with the right activity. These activities
were: standing, walking, going up on stairs, going down on
stairs, going up by elevator, going down by elevator, opening
and closing doors. All these for both cases with the phone
in pocket and with the phone in hand. Using Weka’s cross-
validation option, we compared two window sizes of 128 and
of 256 samples, testing all the classifiers available on Weka.
Naive-Bayes had the best performance on a window size of
256 samples, which we later used in our evaluation.

6http://www.cs.waikato.ac.nz/ml/weka/

With an accuracy of 85.3% for Naive-Bayes, some ac-
tivities were wrongly classified, e.g., walking was confused
with going down the stairs 10% of the time. In practice, it is
common for multiple activities to be captured within a single
256 sample window (3.2 seconds at sensor sampling frequency
of 40Hz), so the rate of bad classifications may be higher.
To prevent these wrong inferences from having a significant
negative effect on location tracking estimation, we need the
assistance of a separate component to be resilient to such
wrongly classified activities. In our system, this is the WiFi
fingerprinting component which is described next.

C. WiFi Fingerprinting Component

The WiFi fingerprinting localization component in Pazl
can be seen as a stand alone localization solution but because
of its limitations (e.g., not being able to localize in areas
with no WiFi coverage) we have used it as an alternative and
complement to the PDR component.

Based on a WiFi scan measurement from the phone, the
vector of the five strongest APs is taken as the fingerprint and
compared to all fingerprints in the training set. The closest
matching fingerprints are selected using Euclidean distance
(as in [29]). A weighted mean of the first three locations
corresponding to the closest matching fingerprints is chosen
as the estimated location from WiFi fingerprinting component.

The frequency of WiFi scans was chosen to be one scan
every 20 seconds, which is a compromise between keeping the
energy consumption low as each WiFi scan increases energy
consumption on the phones and gathering enough data for the
WiFi coverage map generation as well as assisting with the
PDR estimation sufficiently often.

Following the above outlined approach for WiFi finger-
printing, we found that location estimations for some places in
the building are more accurate than others. This is illustrated
in Figure 9, which shows areas with low (green) and high
(red) location errors, calculated as the distance between the
estimated location and the ground truth.

Fig. 9: Spatial distribution of WiFi fingerprinting based
location estimation errors on the floor plan.

Upon deeper examination, we find that this spatial dif-
ference in location estimation errors is linked to the spatial
distribution of locations associated with the closest matching



fingerprints from the database. Greater resemblance of fin-
gerprints between nearby areas results in a higher accuracy
for the WiFi location estimation. The correlation between the
WiFi fingerprinting based location estimation error and the
perimeter (sum of the pairwise distance between the locations
corresponding to three closest matching fingerprints in the
database) is illustrated in Figure 10. We can therefore use the
perimeter as a metric to judge the reliability of the location
estimation from the WiFi fingerprinting component — lower
the perimeter, lower the error. We rely on the perimeter metric
to decide when to use the WiFi location estimation to assist in
correcting the PDR via the particle filter as described below.

Fig. 10: Correlation between the estimation error and the
perimeter of locations for the three closest matching

fingerprints.

D. Particle Filter

Estimations provided by the Activity Classifier with the
Map Knowledge and the WiFi component are integrated using
a particle filter methodology.

Each particle is probabilistically progressed using PDR
and its weight is adjusted based on the observations received
from sensors, like compass indications, distance, probability of
occurrence of different activities and confidence in the WiFi
location estimation.

We observed that the direction (as given by compass
indication) and distance travelled by the user suffer from small
deviations that follow a Gaussian distribution, given by (2).

f(x) =
1

σ
√
2π
e−(x−µ)2/2σ2

(2)

where, x is the chosen deviation and µ is the mean and σ
the standard deviation of observed model.

Each particle performs its own independent PDR with its
own sequence of probabilistically chosen activities, direction
and distance traveled. In addition, whenever reliable WiFi fin-
gerprinting based location estimation is available as indicated
by lower perimeter metric, the weight of particles with PDR
based location estimation that is close to the WiFi location
estimation is increased.

E. Implementation

Pazl implementation consists of two parts: a mobile ap-
plication that collects data from the phone’s sensors (includ-
ing WiFi scans) and a server application that receives the

data to be processed for estimating the locations of WiFi
scan measurements following the hybrid mechanism described
above as well as for WiFi monitoring related visualization and
analysis. The phone application is developed to run on a large
variety of Android phones. To provide increased availability
and concurrent access, the server application is developed to
run on the cloud (Google App Engine in our implementation).

On the phone, acceleration, orientation and WiFi scans are
collected only when the user is moving. When the phone is
stationary, the compass and the radio interface are not used to
save energy. Only the accelerometer is left on to run at a lower
frequency just to sense when the user is moving again. Stored
acceleration, orientation and WiFi measurements are uploaded
opportunistically to the server: when the phone is charging,
when WiFi access is available instead of 3G, or when upload
is forced by the user.

All the WiFi samples are stored on the server together with
the time and estimated location when they were obtained. For
visualization of the coverage map, we use the Inverse Distance
Weight based spatial interpolation [30]. Data is aggregated at
a cell level of size 1 m2, by the median value if there are
more measurements collected in the same cell. Selecting just
a small set of WiFi samples based on the time when they were
collected, dynamic reports can be generated, like the behavior
of the network in a particular time period over several days or
between different times within a day.

V. EVALUATION

A. Localization Accuracy

For our evaluation we assigned the task of collecting
WiFi fingerprints for the training set of the WiFi localization
component to two of our participants. They both contributed
independently to collecting WiFi fingerprints from inside the
building and annotating them with their exact location through
a visual interface on the screen. Other systems like WiFi-
SLAM [23] can automate this process, but we chose this
approach to avoid the complexity of other systems and to have
a higher confidence on the training set for the WiFi local-
ization component that would serve all the other participants.
Similarly, the activity classifier was trained with the sample
acceleration patterns from two participants and the classifier
was used to classify activities of all the other participants.

The experimental evaluation of the system involved 5
participants, all with Nexus One phones running Android
2.3. To evaluate the accuracy of the localization solution,
we used the following experiment setup. A track of about
100m was chosen on the corridors with multiple (20) points,
representing entrances to offices adjacent to a corridor, selected
to offer the ground truth of our evaluation. Three participants
walked on the track with the phone in hand and two with the
phone in pocket. At the beginning of the track their time was
synchronized with a clock and for every encounter of a ground
truth position, the time was recorded. Location estimation
errors were computed for each ground truth location as the
Euclidean distance to Pazl’s location estimation.

The localization error of Pazl is presented in Figure 12. It
can be seen that the accuracy for the case with the phone in
pocket tends to be lower than the case with the phone in hand.



(a) With Pazl (b) With Ekahau Mobile Survey

Fig. 11: WiFi coverage on a floor in dBm.

Fig. 12: CDF of location estimation errors.

This is because counting the number of steps with the phone
in pocket is relatively a harder task.

B. Results Using Pazl and Comparison with Ekahau Mobile
Survey

We evaluated Pazl in a small scale experiment in order
to simulate a crowd–sourced site survey. The experiment was
performed during a full working day (from 10am to 6pm),
with 5 participants. They were asked to carry their Nexus One
phones with them while moving freely during the day inside
the building. No specific training was required beforehand
other than just installing the Android app. We chose to focus
only on a single floor in this analysis for ease of understanding,
but participants were allowed to move between floors in the
rest of the building using elevators and stairs as demanded by
their day tasks.

The coverage maps obtained with Pazl are compared with
the ones from using Ekahau Mobile Survey tool [10] in Figures
11 and 13. The Ekahau application shows the signal coverage
only near the locations where measurements were collected,
indicated with distinctive colors, representing different values
of the Received Signal Strength (RSS). For the coverage
representation using Pazl, we tried to keep the same color
scheme as Ekahau to allow comparison between the two
systems. Pazl estimates an extended coverage map via spatial
interpolation for the entire floor plan, even for areas with no
measurements. In the coloring scheme green indicates very
good RSS, red indicates poor RSS, and other values of RSS
are represented with a mixture of the two colors. Comparison

between the two systems can be done through color correlation
or values comparisons in areas where they could both estimate
the coverage, in particular on the corridors.

The coverage for the floor is shown in Figure 11 where we
can observe that poor RSS was identified by both systems
in the bottom left (Pazl indicated -78dBm, while Ekahau
indicated -75dBm) and bottom right sides of the floor plan
(Pazl indicated -66dBm, whereas Ekahau indicated -70dBm).
We can also observe that both systems detect stronger RSS in
almost the same places, in vicinity of APs. As for differences,
Pazl estimated a region with low signal strength in the middle
of the corridor, near the elevator, indicating -75dBm, whereas
Ekahau recorded the signal strength in that area to be -65dBm.7

We also present the corresponding results for a specific
AP in Figure 13, with very close match observed between
the two systems. A good coverage of the AP is detected by
both systems closer to where the AP is located and also on
the corridor going top to bottom in the figures. Coverage is
relatively worse along the other corridor going from right to
left which we believe is because AP does not have a clear
view of that corridor as it is occluded somewhat by the corner
where the two corridors intersect.

Fig. 14: Channel usage distribution.

Channel usage distribution obtained with Pazl for a floor
was compared with a manual site survey (Figure 14). The
difference is between 1 and 3 APs per channel. This maybe
because some of the APs located in other parts of the building

7Based on manual wireless site survey in that area, we observed that the
max signal strength varies between -71 and -76dBm and that the nearest AP
is shadowed by the corner of the wall. With only one run, this area may have
witnessed direct line of sight when surveyed using the Ekahau tool.



(a) With Pazl (b) With Ekahau Mobile Survey

Fig. 13: Coverage of an AP in dBm.

can be sensed only in specific areas, which might not have
been reached by any of our participants over the period of the
experiment.

We provided Pazl with physical location of campus WLAN
APs in the building to estimate the coverage range (maximum
distance of propagation) of APs that are seen from a floor
(Figure 158). These are not the exact maximum coverage range
of APs because samples are limited to the areas traversed by
participants. Still this experiment demonstrates that Pazl can
detect problematic scenarios such as the APs that have unusual
coverage. Analyzing a particular case, an AP located at the fifth
floor was sensed at the first floor, over 55 meters away. This is
due to the layout of the building which is mostly glass inside
and has a large open area in the center. When we take this
together with the fact that this fifth floor AP shares one of the
heavily used 2.4GHz channel with other APs on the first floor,
we have a scenario where channel allocation is poorly done
risking interference related performance degradation from a
user perspective.

Fig. 15: Coverage range of APs on a single floor obtained
with Pazl.

VI. DISCUSSION

Recall that the experimental evaluation of the system in-
volved all participants using the same type of phone. This is to
avoid the problem of device calibration. With a single type of
phone, all devices are expected to have similar WiFi scanning
sensitivity so data was used exactly how it was sensed by the

8Note that this figure is different from Fig. 4 because the latter corresponds
to the whole of the building

phone. There are solutions available for calibration between
devices, like using kernel estimation with wide kernel widths to
transform RSS from one device to another [31]. However, other
factors such as the position of the phone relative to the human
body may have similar or higher impact than RSS differences
between different types of devices. In [32] differences larger
than 10dBm between direct line of sight and human body
shielding the phone are reported. Considering for all these
aspects in a practical way is an open question.

Our experiment of one working day was just a proof of
concept. We are planning to expand the evaluation to a longer
period of time and involve a larger number of participants with
their different Android phones. The goal is to identify interest-
ing and dynamic aspects of WiFi coverage and interference as
well as evaluate different incentives for people to participate.
Note that there are further challenges to be addressed before
a complete seamless crowdsensing based monitoring solution
can be realized. For example, the localization component of
a continual monitoring system needs to know when the user
is making the transition from outdoors to indoors to start
collecting samples and the other way around to stop collecting
measurements.

VII. CONCLUSION

In this paper, we have highlighted the need for auto-
mated WiFi monitoring in indoor environments with multi-AP
WLAN deployments via measurements. To address this need,
we develop Pazl that leverages smartphones used by occupants
of these environments and their natural mobility to realize a
low cost and automated mobile crowdsensing based WiFi mon-
itoring system. Pazl is built upon a novel hybrid localization
mechanism that combines pedestrian dead reckoning and WiFi
fingerprinting to locate each WiFi measurement obtained from
a participating smartphone. Evaluation of Pazl showed that it
yields results similar to state of the art wireless site survey
tools but in a significantly more automated manner. It also
captures the more valuable user-side perspective. Our future
work will focus on a more thorough evaluation of Pazl over
a longer period with more users capturing dynamic aspects of
WiFi networks and in different environments. Other aspects for
future work include incentive mechanisms to encourage user
participation and broadening the monitoring beyond WiFi to
consider cellular and bluetooth coverage in indoor settings.
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