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Abstract—The large number of applications that rely on
indoor positioning encourages more advancement in this field.
Smartphones are becoming a common presence in our daily
life, so taking advantage of their sensors can help to provide
ubiquitous positioning solution. We propose HiMLoc, a novel
solution that synergistically uses Pedestrian Dead Reckoning
(PDR) and WiFi fingerprinting to exploit their positive aspects
and limit the impact of their negative aspects. Specifically,
HiMLoc combines location tracking and activity recognition using
inertial sensors on mobile devices with location-specific weighted
assistance from a crowd-sourced WiFi fingerprinting system via a
particle filter. By using just the most common sensors available on
the large majority of smartphones (accelerometer, compass, and
WiFi card) and offering an easily deployable method (requiring
just the locations of stairs, elevators, corners and entrances),
HiMLoc is shown to achieve median accuracies lower than 3
meters in most cases.

I. INTRODUCTION

Indoor mobile phone localization is gaining a lot of atten-
tion these days due to the increasing number of location-based
services and applications that require accurate positioning or
continuous tracking inside buildings. These applications can
span from indoor navigation [1] to monitoring different aspects
of the environment like the WiFi coverage [2] and can be used
in many indoor spaces like offices, shopping malls and airports.

Dead reckoning and WiFi fingerprinting are well known
approaches for indoor localization but each has its own ad-
vantages and limitations. While dead reckoning based schemes
naturally enable continuous location tracking, error accrual
over time is a major concern; moreover, dead reckoning in
indoor environments with complex movement patterns is rela-
tively more challenging. WiFi fingerprinting based localization
approach is an attractive alternative as it can leverage the
existing WiFi infrastructure (that is commonplace nowadays
in most indoor environments) as well as exploit the presence
of WiFi interfaces on smartphones. But the WiFi fingerprinting
approach is not suitable for continuous location tracking of a
mobile user because WiFi scanning operations are relatively
quite power hungry. Also the applicability and effectiveness
of WiFi fingerprinting is dependent on a number of factors in-
cluding WiFi AP density, spatial differentiability and temporal
stability of the radio environment.

We propose HiMLoc, a novel solution that synergistically
uses Pedestrian Dead Reckoning (PDR) and WiFi fingerprint-
ing to exploit their positive aspects and limit the impact of
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their negative aspects. Specifically, HIMLoc combines location
tracking and activity recognition using inertial sensors on
mobile devices with location-specific weighted assistance from
a crowd-sourced WiFi fingerprinting system via a particle filter.
HiMLoc uses the most common sensors available on the large
majority of smartphones: accelerometer, compass, and WiFi
card.

Our novel integration of dead-reckoning with WiFi finger-
printing is based on the observation that some spaces in a
building are more accurately localizable with WiFi fingerprint-
ing than others, which is a consequence of differences in spatial
differentiability of the WiFi environment among these spaces
due to building structure and radio signal propagation effects.
To exploit this observation, we associate a weight for the WiFi
fingerprinting component in a particle filter that influences
the extent to which it is relied on in the hybrid localization.
This weight is in turn inversely proportional to similarity area
metric computed by comparing a run-time WiFi fingerprint
with fingerprint database — smaller similarity area results in
a higher weight and vice versa.

To ease deployment, HIMLOC requires just a small set of
parameters specific to the new building, like position of stairs,
position of elevators, position of main entrances and height of
each floor. Moreover, WiFi fingerprinting component is crowd-
sourced to adapt with infrastructure and environment changes
and fast convergence towards increased location accuracy.
Unlike other particle filter systems that require a detailed
knowledge of the building layout, like the exact position
of each wall and dimensions, to restrain the particles, our
system uses distances to known reference points (corner, stairs,
elevators and WiFi estimations) to determine the weights of
particles.

Experimental evaluation of HiMLoc using Android phones
shows that median location accuracy of under 3 meters is
achievable even with complex movement within a building
(e.g., going between floors using stairs and elevators). The
evaluation was performed for two cases of carrying a phone,
in hand and in pocket, with expectedly better results seen
for the first. We evaluate the performance of HiMLoc by
deploying it in a new building other than the one used
for training the activity classifiers with positive results. The
synergistic integration of the WiFi and PDR components is
also revealed by our evaluation of HiIMLoC spanning multiple
floors within a building. On one hand, WiFi fingerprinting
component provides the PDR component with an additional
source for reference points for intermediate recalibrations. On
the other hand, WiFi fingerprinting yields more accurate results
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when considering the knowledge of floor, which the PDR is
able to identify via its activity classifier.

In the next section we present the background and related
work. In section III we describe the design and implementation
of HiMLoc, followed by its evaluation in section IV. We
discuss related issues and directions for future work in section
V and conclude in section VI.

II. BACKGROUND AND RELATED WORK
A. Pedestrian Dead Reckoning

With the continuous miniaturization of sensors and the
richness of applications they enable, their incorporation in
modern phones is now indispensable. Taking advantage of
their presence, recent years have seen an emerging class of
location tracking systems that use inertial sensors to perform
dead reckoning on mobile phones. These systems have the
advantage that very little physical infrastructure is required
for them to function.

Pedestrian Dead Reckoning (PDR) technique works by
estimating successive positions starting from a known location,
based on a way of estimating the traveled distance and the
direction of walking. A solution to determine the traveled
distance is to count the number of steps and estimate their
length. Most typical step detection implementations are based
on analyzing the acceleration data [3], [4], [5], but data from
other sensors have also been tried, like angular velocity [6], [7],
[8] and magnetometer data [9], or combination of these [10].
Using the acceleration magnitude, steps detection is performed
through techniques like peak detection, which looks for peaks
in the acceleration magnitude caused by the leg carrying the
sensor touching the floor [11]; zero crossing, which monitors
the acceleration value zero crossings [12]; and auto-correlation,
by taking advantage of the repetitiveness of human walking
[13]. The traveled distance can also be estimated, either by
observing the rotation of the hip [14], or by estimating the
length of the step. Probably the easiest way to estimate the step
length is to appreciate it as a linear function of the frequency
of stepping [15].

The other important component of the PDR is direction,
which can be obtained by a compass or a gyroscope. The
presence of a compass on a smartphone is more common than
having a gyroscope. But compass indications are subject to
magnetic interference inside buildings. Afzal et al. showed
that these interferences can sometimes result in a direction
deviation from the compass of up to 100° [16]. However, our
experience was that under the normal conditions of human
walking not too close to walls or other metal structures along
the way, magnetic interferences are typically isolated and
tolerable.

Common presence of sensors such as accelerometer and
compass in smartphones have made PDR an attractive tech-
nique for mobile phone localization [17]. While most systems
use PDR for outdoor tracking in conjunction with a map [18],
others such as GAC [19] combine it with occasional GPS
correction for energy-efficient location tracking on roads. A
well-known limitation of PDR schemes is that error can get
accumulated over time unless it is corrected in between.

The steady increase in performance of inertial sensors
opened the opportunity for their use inside buildings with
smartphones [20], [1], [18]. All of these systems have an
increasing error accumulation if they are not periodically ad-
justed. Assisting the system with corrections from beacons has
been experimented in [1]. For an easier deployment, activity
recognition together with some knowledge of the building
layout can provide some error correction points [20].

B. Activity Recognition

Gusenbauer et. al, introduced Pedestrian Dead Reckoning
with Activity Classification, designed to navigate a person in
an underground parking lot in [20]. Thus, they only consider
the case of a person walking with the phone in hand and ahead
of the user, not exploring other cases of carrying the phone
and assuming no WiFi coverage in those environments. Ftrack
[21] also uses an activity classifier to perform floor detection,
having just a limited number of activities that can recognize,
like movements on stairs and in elevator.

However, this is still not enough for a robust localization
system. In general, the activity classifier cannot know all the
possible movements that a user may perform and any large
deviations from the training set can lead to confusion in the
system.

We recognize and factor in the fact that activity classifier
may not always provide an accurate result. This would be
particularly true when the activity classifier is trained by a
small group of users and needs to recognize the activities of
a large number of diverse users. Through a particle filter we
limit the effect of bad classifications by considering all the
other activities with lesser weight, according to the classifier’s
confidence; this helps the system to recover in cases of wrong
classifications.

C. Farticle Filter

A Particle Filter is a numerical approximation to a Bayesian
filter [22]. It has a number of ’particles’, each representing a
virtual position with its own weight to describe the likelihood
of the user having that position. Particle filters are usually used
in PDR system to incorporate maps in the system. Particles
move independently on the floor plan and when they cross
a wall they are eliminated, assigning higher weights to the
other particles following the constraints imposed by the floor
plan [6]. The only problem with this way of using Particle
Filter is that a very detailed model of the building is required
at deployment time, which is hard to obtain. In our case,
the particle filter has the role of fusing activity classification
and PDR estimation from inertial sensors with an independent
location estimation from the WiFi fingerprinting positioning
component.

D. WiFi Fingerprinting

WiFi fingerprinting is a well-known localization technique
that can exploit the presence of WiFi interfaces now common
on smartphones. WiFi infrastructure is also prevalent these
days in many indoor environments. Early WiFi fingerprinting
systems such as RADAR [23] and Horus [24] rely on an initial
training phase to construct fingerprint database for use as a
reference in the positioning phase later but training phase can
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be quite time consuming and expensive. More recent WiFi
fingerprinting systems make this training phase automated via
crowdsourcing using mechanisms of increasing sophistication
(e.g., Redpin [25], OIL [26], WiFi-SLAM [27], Zee [28]).

While these systems work well with a sufficient number
of samples, it is still a challenge to know which runtime
fingerprints stand a good chance to provide a more accurate
location estimation than others. Using just one fingerprint on
the go requires a way to rapidly determine the value brought
by each scan.

WiFi fingerprinting can be quite expensive from an energy
consumption perspective if solely relied on for continuous
location tracking. Another more obvious disadvantage of WiFi
fingerprinting is that it works only where there is WiFi cov-
erage. There are however usually some areas inside buildings
not generally considered for Internet connectivity requirements
like the stairs, toilets and some corridors. Despite this, WiFi
fingerprinting can offer the needed correction for a PDR based
system where available and if used judiciously as we show with
HiMLoc.

E. Hybrid Localization Solutions

Hybrid localization approaches that combine PDR with
WiFi fingerprinting try to avoid the disadvantages of either of
those two individual approaches: PDR have enough correction
instances to reduce the error accumulation in the navigational
component and there always is a location estimation no matter
whether is WiFi signal coverage or not.

Combining PDR with WiFi fingerprinting has been con-
sidered recently in [29] and [30]. The UnLoc system [29]
combines the use of inertial sensors (accelerometer, compass,
gyroscope) with the notion of natural and organic landmarks
that are learnt over time for indoor navigation. While UnLoc
looks to find WiFi landmarks based on the set of APs it sees,
in [30] the use of WiFi fingerprinting is used only in the
location where maximum signal strength is seen, to correct
PDR at those points. While both [29] and [30] use basic PDR
scheme, HiMLocC incorporates a more sophisticated version
with activity recognition capability that would be needed in
more complex environments (e.g., multi-floor buildings with
elevators and stairs to move between floors). Moreover, unlike
[29] and [30], HIMLoc uses only accelerometer and compass
for the PDR which are present in almost every smartphone,
thus achieving greater applicability. HiMLoC is presented at
a high level in its initial form in [2] in the context of Pazl
mobile crowdsensing based indoor WiFi monitoring system.

The current paper provides a detailed design and evaluation of
HiMLoc.

WiFi-SLAM [27] is a pioneer in bringing the robotics tech-
nique of SLAM (Simultaneous Localization and Mapping) into
PDR. By using a detailed model of the building layout, their
PDR implementation can track a person inside the building
and collect WiFi scans to build the radio map at the same
time. Their high accuracy is achieved by using specialized
hardware. Similarly, Zee [28] learns the WiFi environment by
using a PDR assisted by particle filter, in a crowd-sourcing
manner. Unlike Zee and WiFi-SLAM, HiMLoc does not need a
very detailed building model (the exact location of each wall);
instead a few natural landmarks (position of elevators, stairs

and corners) and some parameters of the building (height of
each floor) are sufficient for HIMLOC to obtain a good level of
localization accuracy. Another approach presented by Faragher
et al. [31] was to use smartphones to collect acceleration data
in order to estimate the movements using a Distributed Particle
Filter Simultaneous Localization and Mapping (DPFSLAM).
They relied on WiFi signal opportunistically, just to identify
those places where the user has been before. Their experiment
setup consisted of a single floor in an office building, with
no intention of using landmarks like elevators and stairs and
movements between floors.

Our system builds on these modern solutions and takes
them one step closer towards an easily deployable and widely
applicable indoor localization system.

III. DESIGN AND IMPLEMENTATION
A. HiMLoc Hybrid Localization Mechanism Overview

HiMLoc is illustrated in Figure 1. Phone’s sensors (ac-
celerometer, compass and WiFi card) collect sensor data (ac-
celeration, orientation and WiFi scans) to be used as direct
input to the system. The Activity Classification component
determines what activity the user is performing within a short
interval of time by sampling the Acceleration data. If the
estimated activity can be performed in just a very limited
number of places inside a building, like going up and down
the stairs or taking an elevator, then Map Knowledge can
assist to determine these possible locations. Acceleration and
Orientation are used in the Pedestrian Dead-Reckoning (PDR)
component to track the continuous movement. Finally, if a
WiFi Scan is available, it is used to extract a runtime WiFi
fingerprint. Such a fingerprint is compared with those in a
fingerprint database (created via crowd—sourcing). Estimations
of these components are merged by the Particle Filter to obtain
a single estimation for the whole system. At the end of this
process, if WiFi Scan information is available, it is annotated
with the estimated location and used to update the fingerprint
database.

Phone Sensors
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Acceleration

WiFi
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Activity
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Fig. 1: Schematic of HiMLoc hybrid localization mechanism.
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Next we present the two main components of HiMLoc: the
Pedestrian Dead Reckoning driven by Activity Classification
for continuous tracking and the WiFi fingerprinting compo-
nent.
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B. Pedestrian Dead Reckoning

The PDR estimates successive positions of a moving pedes-
trian starting from a known position through estimations of
traveled distance and direction of movement. HiIMLoc uses
this method to track the position of a person when walking.
But in order to know what activity the user is performing,
HiMLoc relies on an activity recognition phase performed by
the Activity Classification component.

Based on the detected activity, the system chooses how to
interpret user’s movements. HIMLoOC needs this component to
distinguish between vertical movements (going up/down stairs
and elevators) and horizontal movements (walking). With the
help of Map Knowledge, activity recognition can provide even
more information about the user’s location. Certain activities
like going up or down stairs or taking an elevator can be
performed only at a limited set of known locations inside a
building. Getting the activity right has the effect of providing
the needed periodic correction to the PDR in order to reduce
the accumulating error caused by noisy sensors and other
interferences over long tracks.

The most suitable sensor for activity recognition is the
accelerometer as it is an inertial sensor permitting energy-
efficient sampling at a high rate for continuous tracking. Most
activities are performed similarly every time and their accel-
eration patterns can make them recognizable. All smartphones
sense the acceleration on three axes orthogonal to one another.
Considering that the sensitivity of the sensor is the same on
all three axes, the acceleration magnitude will always indicate
the same values, no matter the orientation of the phone:

a=./a;+aj+al—yg (D

where g is the Earth gravity, az, ay and az represent the
acceleration received on the Cartesian axes Ox, Oy and Oz
respectively.

HiMLoc was designed to permit two ways of carrying
the phone: in pocket and in hand. For the case with the
phone in pocket we chose to investigate using the front pocket
of the trousers. In the case of carrying the phone in hand
we considered it to be straight in front of the user like for
navigation purposes. A common aspect between these two
cases is that the phone can be considered static relative to
the user’s body.

The system was trained to recognize the following activ-
ities: stationary, walking, elevator going up, elevator going
down, going up on stairs, going down on stairs, opening
and closing doors. Each of these were considered in the two
scenarios: carrying the phone in hand and in pocket. The PDR
component reacts differently to each of these activities.

Horizontal movements

If the activity performed by the user is determined to be
walking, either with the phone in pocket or with the phone in
hand, the user’s movement is tracked on a horizontal plane,
using traveled distance estimation and direction. Next we
present how these estimations are obtained.

Figure 2(a) presents the acceleration magnitude pattern of
walking with the phone in hand. The red curve indicates the

Acceleration (m/s2)
Acceleration (mis2)

13000 14000 15000 16000 17.000 18

Time (ms)
(b) Phone in pocket.

Fig. 2: Acceleration pattern (raw acceleration with red and filtered
acceleration with blue) when walking.

11,000 12,000 13.000 14,000
Time (ms)

(a) Phone in hand.

raw acceleration and the blue curve is the same acceleration
after adding a weighted average smoothing filter. Each step
leaves the signature of a high spike in acceleration, caused
by the heel touching the ground, followed by a deceleration.
To estimate the traveled distance, HiMLoc first smooths the
acceleration to eliminate some of the noise, then applies a
zero crossing method to count the number of steps. In the case
of walking with the phone in pocket, the same technique of
counting the number of steps is used, but because the vibrations
are more intensive when holding the phone in pocket, a low-
pass filter is also used.

Step length is computed as a linear function of stepping
frequency [17]. HIMLoc computes the traveled distance as the
sum of each step’s length. This solution gives good results, but
has its limitations. We conducted an experiment to evaluate the
efficiency of this method of distance estimation on a window
size 3.2 seconds of uniform walking. Doing several walks
at different speeds we observed deviations of the expected
distance from the actual traveled distance. The density of these
deviations is represented in Figures 3(a) and 3(b). We observed
errors of up to 15% that can have negative effect on the
accuracy of the system. Our solution was to enforce the particle
filter to correct for this deviations from the exact distance, as
it will be presented later in the Particle Filter section.
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m(a) Pﬁone ;;1 hang. (b) Phone in pocket.
Fig. 3: Deviations of the estimated distance from the real traveled
distance

The direction of movement also needs to be estimated.
Considering that each smartphone has a compass, we chose
this sensor to provide the direction. It is true that compasses are
sometimes affected by magnetic interferences inside a building
caused by the building structure and electric equipments, but
we observed these interferences to be just isolated and not
very disturbing when the person is moving at normal walking
speed. Using a time frame to average the compass indications
can eliminate some of the local interferences.

Evaluating the compass sensor on a long walk, we have
observed that the human body has a slight rotation when
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stepping which is detected by the compass. Figures 4(a) and
4(b) show the compass deviation distribution in an interval of
3.2 seconds, capturing on an average 6 steps of walking. This
rotation is more obvious with the phone in pocket (Figure 4(b))
as the hips tend to rotate much more than the upper body.

0010 0015 0020 0025
0005 0010 0015

0005

0000
0000

(a) Phone in hand. r(b) Phone in pocket.
Fig. 4: Deviations of the compass indication from the true direction
of movement

But choosing a good size window to average the compass
data can overcome this rotation in order to provide a more
reliable direction of movement. A window size of 3.2 seconds
usually captures 6 steps of movement at average walking
speed, which allows for every two consecutive steps to cancel
each others rotations. This can be observed from Figures 5(a)
and 5(b), where the compass indication is averaged over the
time window and compared to the true direction of movement.

008

004 006
ty
002 003 004

002

001

000

(a) Phone in hand. (bz)u Phone in pockiat. :
Fig. 5: Deviations of window averaged direction from the true
direction of movement

HiMLoc considers the phone to have a static position
relative to the body throughout the movement. To compensate
any deviation of the phone from the user’s frame orientation,
a correction angle is determine after the initial few steps on
the corridor, when we have the information of the corridor
orientation from the Map Knowledge, or after two landmarks
where we know the position of each landmark on the map, by
assuming the walking movement to be in a straight line.

The distance and direction corrections are considered in
the Particle Filter when choosing a distance and direction for
each particle to progress the PDR.

If the compass deviation suddenly gets close to a right
angle, the system infers that the user has left the corridor,
either to go into a room or made a turn to another corridor.
This event is considered as encountering a landmark and the
position of the closest one is used to correct the system as it
will be described in the Particle Filter section.

Vertical movements

Elevator movements present a specific pattern, with signif-
icant accelerations when the elevator starts and stops. Figure
6 presents these two events of the elevator denoted by the
two large spikes in opposing directions. The number of floors
ascended or descended by the elevator can be determined from
the difference of times between the start and the stop of the
elevator movement. In both cases of carrying the phone (pocket
and hand), the elevator acceleration presents similar patterns.
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Fig. 6: Elevator acceleration showing a large spike at start followed
by an opposing spike when stopping.

For the activities of going up and down the stairs, a similar
method of step counting is used. By counting the number of
stairs ascended or descended, the new level can be accurately
determined as it is presented in the evaluation section. Figure
7 presents the acceleration magnitude for the activity of going
down on stairs.

Acceleration (mfs2)

10.000 10,300 11000 11,500 12000 12,500 13.00C

. . Time (ms} .
Fig. 7: Going down the stairs with the phone in hand.

Classification performance

The Weka! machine learning software was used to clas-
sify the acceleration samples into activities. The training set
consisted of 176 instances of activities from two participants
manually annotated with the right activity, each activity having
at least 6 instances. These activities were: stationary, walking,
going up on stairs, going down on stairs, going up by elevator,
going down by elevator, opening and closing doors. All these
activities were considered for both cases with the phone in
pocket and with the phone in hand. Features were selected
from the time domain (mean, variance, standard deviation, first
integral (velocity), second integral (distance) and interquartile
range) and from the frequency domain (energy and entropy)
of the acceleration magnitude. Using Weka’s cross-validation
option, we compared two window sizes 128 and 256 samples
and three classifiers, J48, Naive-Bayes and FT (Table I). These
three classifiers had the best performance out of the classifiers
implemented in Weka. Even though the 256 window size had
a slightly better performance, we decided to use a window
size of 128 samples because it allows more granular position
estimations. The chosen classifier was Naive-Bayes because

Thttp://www.cs.waikato.ac.nz/ml/weka/
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TABLE I: Weka classifiers performance with cross-validation.

148 Naive-Bayes FT
70.5% 81.7% 80.5%
74.2% 85.3% 81.9%

128 window-size
256 window-size

of its good activity classification performance and faster run
times.

The confusion matrix for Naive-Bayes showed that 10%
of the activities of going down on stairs were classified as
walking and another 10% as opening a door, while 5% of
walking was classified as going down the stairs, 15% of the
activities of going up on stairs were classified as walking. This
was for the ideal case where activities were captured in the
sampled window separately from other activities. In practice,
it is common for more activities to be captured in the same
window of 128 samples (3.2 seconds at a frequency of one
sample every 25msec), so the rate of bad classifications may be
higher in practice. To prevent these wrong classifications from
having a significant negative effect on the location tracking,
we need to assist the system with an independent component.
For this we employ a WiFi fingerprinting based localization
component which is described next.

C. WiFi Localization Component

This can be seen as a stand alone component but in HiMLoc
we used it to complement the PDR estimation through a
particle filter.

At run time, the vector of top five strongest APs and
their signal strength values are selected and compared to the
fingerprints in the database. The closest matching fingerprints
are selected using Euclidean distance in the signal space (as
in [32]). Fingerprints are stored in the database in groups
representing cells. Each cell has the size of 1x1m and together
they form the grid covering a floor plan. To support continuous
update of the training set of WiFi fingerprints, all fingerprint
are annotated with the time when they were collected. Newer
fingerprints get a higher priority in fingerprint selection thus
creating a simple solution to infrastructure change adaptation.
The centroid of the closest three fingerprints gives the location
estimation of the component.

We identified that the position estimation with WiFi finger-
printing is not spatially uniform, some areas having a higher
accuracy of localization than others. Figure 8 indicates regions
with a high (green) and low accuracy (red), based on the
distance between the estimation and the ground truth.

In order to know when a WiFi location estimation is
reliable, we introduce the notion of similarity area of a WiFi
fingerprint, which is the area described by all points in the
fingerprint database with a fingerprint close to the one at
runtime. A threshold for the Euclidean distance in the signal
space between the runtime fingerprint and each fingerprint in
the database is used to define closeness. We set this threshold
empirically to 12.5 in our implementation. The area spanning
all close points determines the similarity area. Figure 9 shows
the correlation between the estimation error and the similarity
area.
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Fig. 8: Spatial distribution of WiFi fingerprinting based location
estimation errors on the floor plan.
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Fig. 9: Correlation between the estimation error and the similarity
area.

We observed that the errors of estimation are much lower
when the similarity area is small. While the errors are not
necessarily larger when the similarity area is higher, they are
more variable than to the left of the chart, so our solution
is to consider the estimations with a low similarity area as
offering a higher certainty of their indication. In fact, having a
small similarity area is an indicator that the fingerprint is well
distinguishable from other fingerprints and similar fingerprints
can be found in just a small area in the building. HiMLoc
assigns higher weights to the estimations with a low similarity
area as they are considered to be more accurate.

D. PFarticle Filter

HiMLoc uses a Particle Filter to integrate all estimations
from Activity Classifier, Map Knowledge, WiFi positioning
component and PDR’s variables (distance and direction). The
role of the particle filter is to correct these estimations that
are possibly affected by noise. This is done by investigating
all possible activities based on their probability, determining
the possible distance deviation and compass deviation in each
time window.

Each particle has its own PDR component where it chooses
an activity for each time window based on the probabilities
provided by the Activity Classifier for each activity, a distance
deviation for walking in the time window and a compass
deviation. The compass deviation at the window level (Figures
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5(a) and 5(b)) and the distance deviation (Figures 3(a) and
3(b)) can be tightly fitted by a normal distribution. Based
on their observed behavior in practice, the probability of
encountering any deviation is:

L @220 @)

xTr) =
fl@) = —7

where, x is the chosen deviation and p is the mean and o
the standard deviation of observed model.

Based on the probability, each particle selects its own
correction values to compensate for the estimated value. In
turn, this probability will affect the weight of the particle.
The activity recognition variable gets its probability from the
classification confidence of the Activity Classifier.

The other purpose of the Particle Filter is to prevent the
system from getting lost when the PDR starts accumulating
errors. When there is an external assistance, for instance a
position is indicated by the Map Knowledge (e.g. because
of a corner), particles weights are updated inverse propor-
tional to the distance between the particle’s position and
the assistance indicated position. In the case of the WiFi
component estimations, the confidence of the estimation is
determined based on the similarity area. As it can be observed
from Figure 9, when similarity area is small, the errors of
WiFi location estimation tends to be small, so we want to
assign a higher confidence to those estimations. An exponential
model provides the confidence of WiFi location estimations by
indicating high confidence when the accuracy area is small and
low confidence when the similarity area is high. The weight of
each particle is updated based on WiFi estimation confidence
and on the distance between the position of the particle and
the WiFi estimation.

So, the weight of a particle is updated as a sum of all the
weights of the probabilistic variables:

W; = Wo + Wq + Wo + wWg + Wy 3)

where w; is the final weight, wq is the initial weight of the
particle and w,, w,, wq, wy are the weights computed for the
particle’s variables (activity selection, orientation, distance and
WiFi fingerprinting based fix assistance if available) based on
their likelihoods.

The life cycle of the Particle Filter begins with all the
particles having the same weight at the starting point. There
are three steps repeated by the Particle Filter in a loop:

e selection of particles. At the start of the iteration, some
particles are sampled to progress and create the new
group of particles. This selection is done based on
their weight.

e weight update based on the variables selected by
the PDR. Each particle randomly creates its own set
of variables and progresses the particle, updating its
weight accordingly.

e  observations about the environment update the parti-
cles’ weight. If there is an external contributor like
the Map Knowledge or the WiFi positioning, particles
closest to the specific positions get higher weights.

e  weight normalization. The weight of all particles are
normed to sum up to one.

E. Implementation

HiMLoc was implemented as a system with two parts: a
mobile application that collects data from the phone sensors;
and a server side application that receives and processes this
data. With the phone application designed to run on a large
number of smartphones, we chose the Android platform and
evaluated our implementation using HTC Nexus One phones.
For increased availability with concurrent access, the server
side application runs as a cloud app on the Google App Engine
platform.

Phone sensors are sampled only when the user carrying
the phone moves. When the phone is static, the compass and
radio card are disabled to save energy. Only the accelerometer
is left on to run at a lower frequency just to sense when
the user is moving again. Acceleration, orientation and WiFi
scans are locally stored to be uploaded opportunistically to the
server: when the phone is charging, when WiFi connectivity
is available, or when an upload is requested by the user.

The frequency of WiFi scans was chosen to be one scan
every 20 seconds, which is a compromise between keeping
the energy consumption low, with each WiFi scan imposing
an extra energy consumption on the phones, but also gather
enough data to assist the PDR estimation more often.

IV. EVALUATION

In this section we present our evaluation of the floor
detection method as part of the PDR component and the
evaluation of HiMLocC in three different scenarios.

A. Floor detection

There are two types of movements that HIMLoC interprets:
vertical movements and horizontal movements. The vertical
movement is described by the movement of the elevator and
going up and down the stairs. The immediate effect of correctly
estimating the vertical movements is determining the change
in floor level.

We evaluated the performance of the PDR floor detection
in two different buildings in the University of Edinburgh:
Informatics Forum (IF) and Appleton Tower (AT), each with
their own different characteristics. The Activity Classifier
was trained in a single building and used to recognize the
performed activities in both buildings.

Table II presents the performance of stair counting in
the case of using the stairs with the phone carried in hand.
These numbers indicate the performance of stair counting as
an average of 5 independent movements between a number
of levels indicated for each building. The observation was
that even if in some cases the stair counting mis-performed
by a few stairs, the number of these wrongly counted steps
was substantially smaller than half of the number of stairs
between two levels, and so the level identification was not
affected. In all the evaluation scenarios, the system indicated
the correct floor. The same performance was achieved in the
case of carrying the phone in pocket as indicated in Table III.
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TABLE II: Stair Counting performance when using the stairs with
the phone in hand.

No of floors Actual number | Counted going up Counted going down
IF 1 floor 24 24 24.8
IF 2 floors 50 48.8 49.6
IF 4 floors 102 97.4 100.6
AT 1 floor 29 28 28.3
AT 2 floors 59 57.6 56.6
AT 4 floors 119 115.6 118

TABLE III: Stair Counting performance when using the stairs with
the phone in pocket.

No of floors Actual number | Counted going up Counted going down
IF 1 floor 24 25.2 26.8

IF 2 floors 50 524 52.2

IF 4 floors 102 100.8 105.8

AT 1 floor 29 28 30

AT 2 floors 59 60 56.6

AT 4 floors 119 120 115.3

The elevator vertical movement was similarly evaluated,

this time looking at the time between the elevator peaks, rep-
resenting the start and stop of elevator movement as observed
in Figure 6. Table IV presents the times between the elevator
peaks measured by the system when the elevator was moving
a number of floors as specified. The observation is that floor
detection is possible because the time between two floors is
more than 2000ms, for both of the two buildings, while the
maximum deviation of the time between peaks from what
was expected was less than half of the time between two
consecutive floors.

TABLE 1V: Elevator times between floors.

Going up-

Going down-

Going up- ! Going down !
- max time - max time
No of floors avg time .. avg time ..
(ms) deviation (ms) deviation
) (ms) ) (ms)
IF 1 floor 2804.3 120.6 2662.8 63.83
IF 2 floors 4262 288 4318 285
IF 4 floors 8765 310 8865.4 290.4
AT 1 floor 2587.75 288.75 2643.75 393.2
AT 2 floors 5306.5 306.5 5431.5 368.5
AT 4 floors 11230.25 318.75 10899.75 401.25

Performance of floor detection in the case of elevator move-
ments was again 100%. It should be noted that this evaluation
was performed when the user was static. Any extra movements
from the user might not allow the best peak detection, but at
the same time, this assumption is plausible since the elevator
doors are closed while the elevator is moving.

B. Localization Accuracy in Different Scenarios

To evaluate the performance of HIMLoc, we put the system
to the test in three different scenarios. First scenario was
designed to evaluate the performance of the HiIMLoc system on
one floor of an office environment where frequent landmarks
were present, corners and WiFi assistance, with a large training
set of WiFi Fingerprint-Location pairs. The second scenario
was to evaluate HiMLoc performance for movements that
span multiple floors. And the third scenario was to monitor
HiMLoc’s performance evolution during deployment in a new
environment.

Single floor of an office building

For this experiment we used the Informatics Forum, which
is a modern office building. To train the WiFi fingerprinting
component, we collected multiple fingerprints on the first floor
annotating them with their precise location. This was done in a
crowd-sourced manner, data being collected my multiple users
to be joined in a single database on the server side application.
There are already solutions available that can automate this
process much faster, like WiFi-SLAM [27], but we chose this
approach to avoid the complexity of other systems and to have
a higher confidence on the training set for the WiFi localization
component.

To evaluate the accuracy of HiMLoc, we selected a track
of about 100m on the corridor with a number of 20 reference
points representing entrances to offices adjacent to the corridor.
Localization error was determined as the Euclidean distance
between the known position of these reference points and
HiMLoc’s location estimation at the time of encounter. We
compare the two cases of carrying the phone in pocket and
in hand. Results for localization error with HiMLoc for these
two cases are reported earlier in [2] (see Fig. 12). Those results
essentially show that the case of carrying the phone in hand
always has a higher location estimation accuracy (median error
under 2m with phone in hand vs. median error between 2-3m
for the phone in pocket case) as counting the number of steps
with the phone in pocket is a relatively harder task.

For the following experiments we considered only the case
of carrying the phone in hand.

Moving between floors

In the second experiment we included the second floor of
the same building too. Starting from the same starting point
on the first floor, the track went up the stairs and followed
the second floor corridor similar to the first floor track. This
experiment was designed to evaluate the training set of the
WiFi component when moving between floors. In the first
instance we had all the WiFi fingerprints from the entire
building in a single training set. The effect of this was a lot of
confusion in the WiFi component of HiIMLoc, making mistakes
between floors (Figure 10). As a consequence, we decided
to rely on the PDR to estimate the floor and use only the
fingerprints from the same floor as training set for the WiFi
component.
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Fig. 10: CDF of localization errors moving between two floors.

We then wanted to evaluate the performance of the hybrid
approach compared with each of the two localization solutions
alone: PDR and WiFi fingerprinting. WiFi fingerprinting alone
cannot perform where there is no proper WiFi coverage and
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continuous scanning has negative implications on the battery
life. The average energy used while performing WiFi scans
is about 260mW, whereas the accelerometer needs 3mW and
the compass 60mW, on a Nexus One phone. HIMLOC uses
the cheaper sensors (compass and accelerometer) for contin-
uous sensing and occasionally WiFi scans, with the effect of
reducing the power consumption of the system.

To evaluate the improvement of HiMLoc over PDR with
Activity recognition alone, we performed another experiment
over two floors in the same building. The track involved
walking on the corridor at the first floor, going up on stairs
to the second floor, walking on the corridor at the second
floor, walking in a large open space, resting on the couch,
walking on the corridor again, taking the elevator back to the
first floor and walking back to the starting point. Using this
track, we compared the performance of the PDR with activity
recognition alone with the performance of HiMLoc (Fig. 11).
We can see that HIMLoc performs better as median error but
also having lower errors overall, due to occasional assistance
from WiFi fingerprinting when there are long periods of no
assistance from Map Knowledge in the PDR.
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Fig. 11: Comparison between PDR alone and HiMLoc.

Deploying the system in a new building

For this experiment we chose a large open floor in a
different building from the office building used before. This
building is used for lectures, group reunions and other student
activities. It has the first two floors joined in a large open
space in the middle of about 600 m? with lecture theaters and
a coffee area on sides. It has stairs on two sides and an elevator
to reach the second floor where there is a half open corridor to
facilitate access to some more lecture rooms. This was ideal
to evaluate the case of deploying to a new environment with
fewer landmarks from the building structure.

After inputting the system’s parameters, like the location
of stairs, elevators and corners, the system was ready for test.
In the first instance there were no WiFi fingerprints in the
training set, so the system was running only on PDR. After
an hour of continuous movements in the open area, using the
stairs and the elevator between the first two levels, the system
had collected a number of 200 WiFi fingerprints to be used as
training set. Figure 12 presents the performance of the system
at start and after an hour.

We observed that the performance of the system improved
over time. After collecting WiFi fingerprints for just an hour
the system had a median improvement of about 20%. This
performance improvement over time is obtained from the
higher number of assistance opportunities for the PDR, with
the WiFi component having a denser training set.
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Fig. 12: CDF of localization errors in a new building.

Our system was designed to be available to most smart-
phone users, utilizing just compass, accelerometer and WiFi
card, to facilitate a crowd-source built WiFi training set by
more people moving around the building with their daily
activities. This allows a faster convergence to a more accurate
estimation, making HiMLoc even more easier to deploy.

V. DISCUSSION AND FUTURE WORK

Probably the most important resource of smartphones is
their battery. Long running applications have to consider their
impact on this resource and to reduce energy consumption
as much as possible. But there is always a trade-off between
low energy consumption and system’s performance. It is the
case with localization on smartphones as well. Continuous
use of WiFi scans consumes more energy than continuous
sampling of acceleration data. With HiMLoc we aimed to
reduce the number of WiFi scans but also keep providing
some to reduce the error accumulation in the PDR caused
by drift and noisy readings. In this trade-off between location
accuracy and battery consumption we found that one WiFi scan
every 20 seconds is ideal for our cause. This was empirically
determined based on analysis of the time between landmarks
in one of the buildings we investigated. We consider this to be
a feature imposed by the building, as well as the application’s
purposes. If the application requires high location accuracy,
then this frequency can be increased to provide assistance for
the PDR more often or decreased if the application constraints
are not very strict. In the end, the localization system should
be adapted base on the purpose of its application. We leave
the investigation of this energy-accuracy tradeoff determined
by application requirements for future work.

In two of our evaluation scenarios we had access to a
crowd-sourced WiFi site survey of the Informatics Forum
building. This was collected with the help of a group of users
inputing their location on an map through a graphical interface
while the application was scanning the WiFi environment. In
our third scenario we considered a naive way of building
the WiFi database, where all the WiFi scans are annotated
with the estimated location from the system and stored in the
database, without any filtering or creating relations between
fingerprints. More sophisticated solutions, like [27] and [28] do
that, but they require more detailed building models, whereas
HiMLoc was conceived as a easy deployable solution, with
just a small set of parameters: location of stairs, elevators,
corners, entrances and height of floors. In future work we will
investigate more effective crowdsourced WiFi fingerprinting
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that is inline with our goals, i.e., to create an easy to deploy
system which can be used by many people.

The two cases we considered for carrying the phone: in
the front pocket of trousers and in hand in front of the user,
were chosen as consequence of an initial investigation of how
people carry their phone and also the need to have the phone
in a static position relative to the user’s body so that the phone
can detect user’s movements more accurately. We trained the
Activity Classifier with samples of activities in one building
and used these in both buildings of the experiment. However,
some people may prefer to carry their phones differently, like
in a bag or purse, but these cases are very hard for location
systems that use inertial sensors because their position is not
fixed and the acceleration detected by the phone is a mixture
between the bag’s movement and the free movement of the
phone inside the bag. Some possible work around this problem
would be to learn the patterns of movements on the way, with
more assistance from independent references, like landmarks
or WiFi, knowing that people tend to keep a uniform motion
when walking. We leave this investigation for future work.

VI. CONCLUSIONS

Smartphones equipped with several sensors and network
interfaces aid in indoor phone localization. In this paper, we
have presented HiMLoc, a hybrid indoor location tracking
solution that integrates Pedestrian Dead Reckoning with indoor
landmarks detection and WiFi fingerprinting. The main advan-
tage of this solution is that it offers easy deployment as it relies
on only a small set of building parameters (e.g., location of
elevators, stairs and corners and distance between floors) and
can provide good estimation for most smartphones by using
just three of the most common sensors present on smartphones:
accelerometer, compass and WiFi card. Our integration of PDR
with WiFi fingerprinting based estimations is performed by a
particle filter and is based on the concept of similarity area
for WiFi fingerprints. Very distinct fingerprints over a small
area tend to provide very good location estimation accuracy
as do fingerprints obtained from the same floor. Evaluations
show that HiIMLoc achieves median location error less than
3 meters in most cases. In future work we will investigate
the trade-off between localization related energy consumption
and desired localization accuracy as determined by application
requirements.
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